Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurogenet ; 34(1): 92-105, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31965876

RESUMEN

Amyloid precursor protein (APP), the precursor of amyloid beta peptide, plays a central role in Alzheimer's disease (AD), a pathology characterized by memory decline and synaptic loss upon aging. Understanding the physiological role of APP is fundamental in deciphering the progression of AD, and several studies suggest a synaptic function via protein-protein interactions. Nevertheless, it remains unclear whether and how these interactions contribute to memory. In Drosophila, we previously showed that APP-like (APPL), the fly APP homolog, is required for aversive associative memory in the olfactory memory center, the mushroom body (MB). In the present study, we show that APPL is required for appetitive long-term memory (LTM), another form of associative memory, in a specific neuronal subpopulation of the MB, the α'/ß' Kenyon cells. Using a biochemical approach, we identify the synaptic MAGUK (membrane-associated guanylate kinase) proteins X11, CASK, Dlgh2 and Dlgh4 as interactants of the APP intracellular domain (AICD). Next, we show that the Drosophila homologs CASK and Dlg are also required for appetitive LTM in the α'/ß' neurons. Finally, using a double RNAi approach, we demonstrate that genetic interactions between APPL and CASK, as well as between APPL and Dlg, are critical for appetitive LTM. In summary, our results suggest that APPL contributes to associative long-term memory through its interactions with the main synaptic scaffolding proteins CASK and Dlg. This function should be conserved across species.


Asunto(s)
Conducta Apetitiva/fisiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Memoria a Largo Plazo/fisiología , Cuerpos Pedunculados/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/fisiología
2.
Neurobiol Learn Mem ; 138: 182-197, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27568918

RESUMEN

A widely accepted notion for a process underlying memory formation is that learning changes the efficacy of synapses by the mechanism of synaptic plasticity. While there is compelling evidence of changes in synaptic efficacy observed after learning, demonstration of persistent synaptic changes accompanying memory has been elusive. We report that acquisition of a hippocampus and long-term potentiation dependent place memory persistently changes the function of CA1 synapses. Using extracellular recordings we measured CA3-CA1 and EC-CA1 synaptic responses and found robust changes in the CA3-CA1 pathway after memory training. Crucially, these changes in synaptic function lasted at least a month and coincided with the persistence of long-term place memories; the changes were only observed in animals that expressed robust memory, and not in animals with poor memory recall. Interestingly, our findings were observed at the level of populations of synapses; suggesting that memory formation recruits widespread synaptic circuits and persistently reorganizes their function to store information.


Asunto(s)
Hipocampo/fisiología , Memoria a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Memoria Espacial/fisiología , Sinapsis/fisiología , Animales , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Vías Nerviosas/fisiología
3.
bioRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38948698

RESUMEN

Relevance-based selectivity and high energy cost are two distinct features of long-term memory (LTM) formation that warrant its default inhibition. Spaced repetition of learning is a highly conserved cognitive mechanism that can lift this inhibition. Here, we questioned how the spacing effect integrates experience selection and energy efficiency at the cellular and molecular levels. We showed in Drosophila that spaced training triggers LTM formation by extending over several hours an increased mitochondrial metabolic activity in neurons of the associative memory center, the mushroom bodies (MBs). We found that this effect is mediated by PKCδ, a member of the so-called 'novel PKC' family of enzymes, which uncovers the critical function of PKCδ in neurons as a regulator of mitochondrial metabolism for LTM. Additionally, PKCδ activation and translocation to mitochondria result from LTM-specific dopamine signaling on MB neurons. By bridging experience-dependent neuronal circuit activity with metabolic modulation of memory-encoding neurons, PKCδ signaling binds the cognitive and metabolic constraints underlying LTM formation into a unified gating mechanism.

4.
Curr Biol ; 34(9): 1904-1917.e6, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38642548

RESUMEN

Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.


Asunto(s)
Memoria a Largo Plazo , Dinámicas Mitocondriales , Cuerpos Pedunculados , Animales , Axones/metabolismo , Axones/fisiología , Drosophila melanogaster/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Memoria a Largo Plazo/fisiología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
5.
Nat Metab ; 4(2): 213-224, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35177854

RESUMEN

During starvation, mammalian brains can adapt their metabolism, switching from glucose to alternative peripheral fuel sources. In the Drosophila starved brain, memory formation is subject to adaptative plasticity, but whether this adaptive plasticity relies on metabolic adaptation remains unclear. Here we show that during starvation, neurons of the fly olfactory memory centre import and use ketone bodies (KBs) as an energy substrate to sustain aversive memory formation. We identify local providers within the brain, the cortex glia, that use their own lipid store to synthesize KBs before exporting them to neurons via monocarboxylate transporters. Finally, we show that the master energy sensor AMP-activated protein kinase regulates both lipid mobilization and KB export in cortex glia. Our data provide a general schema of the metabolic interactions within the brain to support memory when glucose is scarce.


Asunto(s)
Cuerpos Cetónicos , Inanición , Animales , Drosophila/metabolismo , Glucosa/metabolismo , Cuerpos Cetónicos/metabolismo , Mamíferos/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Inanición/metabolismo
6.
Hum Mol Genet ; 18(14): 2575-83, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19401298

RESUMEN

The patho-physiological hypothesis of mental retardation caused by the deficiency of the RhoGAP Oligophrenin1 (OPHN1), relies on the well-known functions of Rho GTPases on neuronal morphology, i.e. dendritic spine structure. Here, we describe a new function of this Bin/Amphiphysin/Rvs domain containing protein in the control of clathrin-mediated endocytosis (CME). Through interactions with Src homology 3 domain containing proteins involved in CME, OPHN1 is concentrated to endocytic sites where it down-regulates the RhoA/ROCK signaling pathway and represses the inhibitory function of ROCK on endocytosis. Indeed disruption of Ophn1 in mice reduces the endocytosis of synaptic vesicles and the post-synaptic alpha-amino-3-hydroxy-5-methylisoazol-4-propionate (AMPA) receptor internalization, resulting in almost a complete loss of long-term depression in the hippocampus. Finally, pharmacological inhibition of this pathway by ROCK inhibitors fully rescued not only the CME deficit in OPHN1 null cells but also synaptic plasticity in the hippocampus from Ophn1 null model. Altogether, we uncovered a new patho-physiological mechanism for intellectual disabilities associated to mutations in RhoGTPases linked genes and also opened new directions for therapeutic approaches of congenital mental retardation.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Regulación hacia Abajo , Endocitosis , Proteínas Activadoras de GTPasa/metabolismo , Discapacidad Intelectual/fisiopatología , Proteínas Nucleares/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Animales , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA
7.
Eur J Neurosci ; 30(8): 1476-86, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19811529

RESUMEN

Abnormalities in the formation and function of cerebellar circuitry potentially contribute to cognitive deficits in humans. In the adult, the activity of the sole output neurons of the cerebellar cortex - the Purkinje cells (PCs) - is shaped by the balance of activity between local excitatory and inhibitory circuits. However, how this balance is established during development remains poorly understood. Here, we investigate the role of interleukin-1 receptor accessory protein-like 1 (IL1RAPL1), a protein linked to cognitive function which interacts with neuronal calcium sensor 1 (NCS-1) in the development of mouse cerebellum. Using Il1rapl1-deficient mice, we found that absence of IL1RAPL1 causes a transient disinhibition of deep cerebellar nuclei neurons between postnatal days 10 and 14 (P10/P14). Upstream, in the cerebellar cortex, we found developmental perturbations in the activity level of molecular layer interneurons (MLIs), resulting in the premature appearance of giant GABAA-mediated inhibitory post-synaptic currents capable of silencing PCs. Examination of feed-forward recruitment of MLIs by parallel fibres shows that during this P10/P14 time window, MLIs were more responsive to incoming excitatory drive. Thus, we conclude that IL1RAPL1 exerts a key function during cerebellar development in establishing local excitation/inhibition balance.


Asunto(s)
Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Potenciales Postsinápticos Inhibidores/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Receptores de Interleucina/fisiología , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Biofisica , Calbindinas , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Proteína 1 Similar al Receptor de Interleucina-1 , Ratones , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuronas/efectos de los fármacos , Neuropéptidos/metabolismo , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp/métodos , Quinoxalinas/farmacología , Receptores de Interleucina/deficiencia , Proteína G de Unión al Calcio S100/metabolismo , Tetrodotoxina/farmacología
8.
Curr Biol ; 28(11): 1783-1793.e4, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29779874

RESUMEN

Memory consolidation is a crucial step for long-term memory (LTM) storage. However, we still lack a clear picture of how memory consolidation is regulated at the neuronal circuit level. Here, we took advantage of the well-described anatomy of the Drosophila olfactory memory center, the mushroom body (MB), to address this question in the context of appetitive LTM. The MB lobes, which are made by the fascicled axons of the MB intrinsic neurons, are organized into discrete anatomical modules, each covered by the terminals of a defined type of dopaminergic neuron (DAN) and the dendrites of a corresponding type of MB output neuron (MBON). We previously revealed the essential role of one DAN, the MP1 neuron, in the formation of appetitive LTM. The MP1 neuron is anatomically matched to the GABAergic MBON MVP2, which has been attributed feedforward inhibitory functions recently. Here, we used behavior experiments and in vivo imaging to challenge the existence of MP1-MVP2 synapses and investigate their role in appetitive LTM consolidation. We show that MP1 and MVP2 neurons form an anatomically and functionally recurrent circuit, which features a feedback inhibition that regulates consolidation of appetitive memory. This circuit involves two opposite type 1 and type 2 dopamine receptors in MVP2 neurons and the metabotropic GABAB-R1 receptor in MP1 neurons. We propose that this dual-receptor feedback supports a bidirectional self-regulation of MP1 input to the MB. This mechanism displays striking similarities with the mammalian reward system, in which modulation of the dopaminergic signal is primarily assigned to inhibitory neurons.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Drosophila/fisiología , Neuronas GABAérgicas/fisiología , Memoria a Largo Plazo/fisiología , Cuerpos Pedunculados/fisiología , Percepción Olfatoria/fisiología , Animales , Neuronas GABAérgicas/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Cuerpos Pedunculados/efectos de los fármacos , Odorantes
9.
Nat Commun ; 5: 4389, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25007915

RESUMEN

Changes in the stability of microtubules regulate many biological processes, but their role in memory remains unclear. Here we show that learning causes biphasic changes in the microtubule-associated network in the hippocampus. In the early phase, stathmin is dephosphorylated, enhancing its microtubule-destabilizing activity by promoting stathmin-tubulin binding, whereas in the late phase these processes are reversed leading to an increase in microtubule/KIF5-mediated localization of the GluA2 subunit of AMPA receptors at synaptic sites. A microtubule stabilizer paclitaxel decreases or increases memory when applied at the early or late phases, respectively. Stathmin mutations disrupt changes in microtubule stability, GluA2 localization, synaptic plasticity and memory. Aged wild-type mice show impairments in stathmin levels, changes in microtubule stability and GluA2 localization. Blocking GluA2 endocytosis rescues memory deficits in stathmin mutant and aged wild-type mice. These findings demonstrate a role for microtubules in memory in young adult and aged individuals.


Asunto(s)
Envejecimiento/fisiología , Aprendizaje/fisiología , Trastornos de la Memoria/fisiopatología , Memoria/fisiología , Microtúbulos/fisiología , Estatmina/fisiología , Animales , Hipocampo/fisiología , Hipocampo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Proteínas de Microtúbulos/fisiología , Mutación/genética , Plasticidad Neuronal/fisiología , Receptores AMPA/fisiología , Transducción de Señal/fisiología , Estatmina/deficiencia , Estatmina/genética , Tubulina (Proteína)/fisiología
10.
PLoS One ; 7(1): e29865, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22272255

RESUMEN

Information arriving at a neuron via anatomically defined pathways undergoes spatial and temporal encoding. A proposed mechanism by which temporally and spatially segregated information is encoded at the cellular level is based on the interactive properties of synapses located within and across functional dendritic compartments. We examined cooperative and interfering interactions between long-term synaptic potentiation (LTP) and depression (LTD), two forms of synaptic plasticity thought to be key in the encoding of information in the brain. Two approaches were used in CA1 pyramidal neurons of the mouse hippocampus: (1) induction of LTP and LTD in two separate synaptic pathways within the same apical dendritic compartment and across the basal and apical dendritic compartments; (2) induction of LTP and LTD separated by various time intervals (0-90 min). Expression of LTP/LTD interactions was spatially and temporally regulated. While they were largely restricted within the same dendritic compartment (compartmentalized), the nature of the interaction (cooperation or interference) depended on the time interval between inductions. New protein synthesis was found to regulate the expression of the LTP/LTD interference. We speculate that mechanisms for compartmentalization and protein synthesis confer the spatial and temporal modulation by which neurons encode multiplex information in plastic synapses.


Asunto(s)
Región CA1 Hipocampal/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Sinapsis/fisiología , Animales , Anisomicina/farmacología , Región CA1 Hipocampal/citología , Dactinomicina/farmacología , Dendritas/efectos de los fármacos , Dendritas/fisiología , Electrofisiología/métodos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Sinapsis/efectos de los fármacos , Factores de Tiempo
11.
Commun Integr Biol ; 3(3): 245-7, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20714405

RESUMEN

Interleukin-1-Receptor Accessory Protein Like 1 (IL1RAPL1) gene mutations are associated to cognitive impairment ranging from non-syndromic X-linked mental retardation to autism. Functionally IL1RAPL1 belongs to a novel family of Toll/IL-1 Receptors, but its ligand is unknown. In a recent study, we have shown that IL1RAPL1 is present in dendritic spine where it interacts with PSD-95, a major scaffold protein of excitatory post-synaptic density. We demonstrated that IL1RAPL1 regulates the synaptic localization of PSD-95 by controlling JNK (c-Jun terminal Kinase) activity and PSD-95 phosphorylation. Loss of IL1RAPL1 in mouse not only led to a reduction of excitatory synapses but also to specific deficits in hippocampal long-term synaptic plasticity. Here we report that activation of JNK pathway in neurons by Interleukin-1 (IL-1) is mediated by IL1RAPL1. The interaction of IL1RAPL1 with PSD-95 discloses a novel pathophysiological mechanism underlying cognitive impairment associated with alterations of the JNK pathway in response to IL-1 and leading to the mislocalization of PSD-95, that subsequently result in abnormal synaptic organization and function.

12.
Curr Biol ; 20(2): 103-15, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20096586

RESUMEN

BACKGROUND: Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) gene mutations are associated with cognitive impairment ranging from nonsyndromic X-linked mental retardation to autism. IL1RAPL1 belongs to a novel family of Toll/IL-1 receptors, whose expression in the brain is upregulated by neuronal activity. Currently, very little is known about the function of this protein. We previously showed that IL1RAPL1 interacts with the neuronal calcium sensor NCS-1 and that it regulates voltage-gated calcium channel activity in PC12 cells. RESULTS: Here we show that IL1RAPL1 is present in dendritic spine where it interacts with PSD-95, a major component of excitatory postsynaptic compartment. Using gain- and loss-of-function experiments in neurons, we demonstrated that IL1RAPL1 regulates the synaptic localization of PSD-95 by controlling c-Jun terminal kinase (JNK) activity and PSD-95 phosphorylation. Mice carrying a null mutation of the mouse Il1rapl1 gene show a reduction of both dendritic spine density and excitatory synapses in the CA1 region of the hippocampus. These structural abnormalities are associated with specific deficits in hippocampal long-term synaptic plasticity. CONCLUSION: The interaction of IL1RAPL1 with PSD-95 discloses a novel pathophysiological mechanism of cognitive impairment associated with alterations of the JNK pathway leading to a mislocalization of PSD-95 and abnormal synaptic organization and function.


Asunto(s)
Cognición , Proteína Accesoria del Receptor de Interleucina-1/fisiología , Mutación , Transducción de Señal , Sinapsis/metabolismo , Animales , Homólogo 4 de la Proteína Discs Large , Hipocampo/citología , Hipocampo/metabolismo , Proteína Accesoria del Receptor de Interleucina-1/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Células PC12 , Fosforilación , Ratas
13.
Proc Natl Acad Sci U S A ; 104(21): 9063-8, 2007 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-17502602

RESUMEN

Null mutations in the IL1-receptor accessory protein-like 1 gene (IL1RAPL1) are responsible for an inherited X-linked form of cognitive impairment. IL1RAPL1 protein physically interacts with neuronal calcium sensor-1 (NCS-1), but the functional impact of the IL1RAPL1/NCS-1 interaction remains unknown. Here, we demonstrate that stable expression of IL1RAPL1 in PC12 cells induces a specific silencing of N-type voltage-gated calcium channels (N-VGCC) activity that explains a secretion deficit observed in these IL1RAPL1 cells. Importantly, this modulation of VGCC activity is mediated by NCS-1. Indeed, a specific loss-of-function of N-VGCC was observed in PC12 cells overexpressing NCS-1, and a total recovery of N-VGCC activity was obtained by a down-regulation of NCS-1 in IL1RAPL1 cells. The functional relevance of the interaction between IL1RAPL1 and NCS-1 was also suggested by the reduction of neurite elongation observed in nerve growth factor (NGF)-treated IL1RAPL1 cells, a phenotype rescued by NCS-1 inactivation. Because both proteins are highly expressed in neurons, these results suggest that IL1RAPL1-related mental retardation could result from a disruption of N-VGCC and/or NCS-1-dependent synaptic and neuronal activities.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteína Accesoria del Receptor de Interleucina-1/metabolismo , Neuritas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Electrofisiología , Regulación de la Expresión Génica , Proteína Accesoria del Receptor de Interleucina-1/genética , Factor de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Células PC12 , Técnicas de Placa-Clamp , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA