RESUMEN
OBJECTIVE: Epigenetic mechanisms, including DNA methylation (DNAm), have been proposed to play a key role in Crohn's disease (CD) pathogenesis. However, the specific cell types and pathways affected as well as their potential impact on disease phenotype and outcome remain unknown. We set out to investigate the role of intestinal epithelial DNAm in CD pathogenesis. DESIGN: We generated 312 intestinal epithelial organoids (IEOs) from mucosal biopsies of 168 patients with CD (n=72), UC (n=23) and healthy controls (n=73). We performed genome-wide molecular profiling including DNAm, bulk as well as single-cell RNA sequencing. Organoids were subjected to gene editing and the functional consequences of DNAm changes evaluated using an organoid-lymphocyte coculture and a nucleotide-binding oligomerisation domain, leucine-rich repeat and CARD domain containing 5 (NLRC5) dextran sulphate sodium (DSS) colitis knock-out mouse model. RESULTS: We identified highly stable, CD-associated loss of DNAm at major histocompatibility complex (MHC) class 1 loci including NLRC5 and cognate gene upregulation. Single-cell RNA sequencing of primary mucosal tissue and IEOs confirmed the role of NLRC5 as transcriptional transactivator in the intestinal epithelium. Increased mucosal MHC-I and NLRC5 expression in adult and paediatric patients with CD was validated in additional cohorts and the functional role of MHC-I highlighted by demonstrating a relative protection from DSS-mediated mucosal inflammation in NLRC5-deficient mice. MHC-I DNAm in IEOs showed a significant correlation with CD disease phenotype and outcomes. Application of machine learning approaches enabled the development of a disease prognostic epigenetic molecular signature. CONCLUSIONS: Our study has identified epigenetically regulated intestinal epithelial MHC-I as a novel mechanism in CD pathogenesis.
Asunto(s)
Enfermedad de Crohn , Metilación de ADN , Epigénesis Genética , Mucosa Intestinal , Organoides , Humanos , Enfermedad de Crohn/genética , Enfermedad de Crohn/patología , Enfermedad de Crohn/metabolismo , Organoides/metabolismo , Organoides/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Animales , Femenino , Masculino , Ratones Noqueados , Bancos de Muestras Biológicas , Adulto , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
BACKGROUND & AIMS: Gene expression patterns of CD8+ T cells have been reported to correlate with clinical outcomes of adults with inflammatory bowel diseases (IBD). We aimed to validate these findings in independent patient cohorts. METHODS: We obtained peripheral blood samples from 112 children with a new diagnosis of IBD (71 with Crohn's disease and 41 with ulcerative colitis) and 19 children without IBD (controls) and recorded medical information on disease activity and outcomes. CD8+ T cells were isolated from blood samples by magnetic bead sorting at the point of diagnosis and during the course of disease. Genome-wide transcription (n = 192) and DNA methylation (n = 66) profiles were generated using Affymetrix and Illumina arrays, respectively. Publicly available transcriptomes and DNA methylomes of CD8+ T cells from 3 adult patient cohorts with and without IBD were included in data analyses. RESULTS: Previously reported CD8+ T-cell prognostic expression and exhaustion signatures were only found in the original adult IBD patient cohort. These signatures could not be detected in either a pediatric or a second adult IBD cohort. In contrast, an association between CD8+ T-cell gene expression with age and sex was detected across all 3 cohorts. CD8+ gene transcription was clearly associated with IBD in the 2 cohorts that included non-IBD controls. Lastly, DNA methylation profiles of CD8+ T cells from children with Crohn's disease correlated with age but not with disease outcome. CONCLUSIONS: We were unable to validate previously reported findings of an association between CD8+ T-cell gene transcription and disease outcome in IBD. Our findings reveal the challenges of developing prognostic biomarkers for patients with IBD and the importance of their validation in large, independent cohorts before clinical application.
Asunto(s)
Linfocitos T CD8-positivos/fisiología , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/etiología , Adolescente , Adulto , Factores de Edad , Estudios de Casos y Controles , Niño , Preescolar , Metilación de ADN , Femenino , Humanos , Masculino , Valor Predictivo de las Pruebas , Pronóstico , Transcripción Genética , Adulto JovenRESUMEN
Phosphatidylcholine (PC) is the major glycerophospholipid in eukaryotic cells and is an essential component in all cellular membranes. The biochemistry of de novo PC synthesis by the Kennedy pathway is well established, but less is known about the physiological functions of PC. We identified two unrelated patients with defects in the Kennedy pathway due to biallellic loss-of-function mutations in phosphate cytidylyltransferase 1 alpha (PCYT1A), the rate-limiting enzyme in this pathway. The mutations lead to a marked reduction in PCYT1A expression and PC synthesis. The phenotypic consequences include some features, such as severe fatty liver and low HDL cholesterol levels, that are predicted by the results of previously reported liver-specific deletion of murine Pcyt1a. Both patients also had lipodystrophy, severe insulin resistance, and diabetes, providing evidence for an additional and essential role for PCYT1A-generated PC in the normal function of white adipose tissue and insulin action.
Asunto(s)
Citidililtransferasa de Colina-Fosfato/genética , Hígado Graso/genética , Lipodistrofia/congénito , Lipodistrofia/genética , Fosfatidilcolinas/química , Células 3T3-L1 , Tejido Adiposo/metabolismo , Adolescente , Alelos , Animales , Niño , HDL-Colesterol/química , Citidililtransferasa de Colina-Fosfato/metabolismo , Biología Computacional , Hígado Graso/metabolismo , Femenino , Glicerofosfolípidos/química , Humanos , Insulina/química , Lípidos/química , Lipodistrofia/metabolismo , Ratones , Mutación , Fenotipo , Distribución TisularRESUMEN
The Wellcome Trust Case Control Consortium (WTCCC) primary genome-wide association (GWA) scan on seven diseases, including the multifactorial autoimmune disease type 1 diabetes (T1D), shows associations at P < 5 x 10(-7) between T1D and six chromosome regions: 12q24, 12q13, 16p13, 18p11, 12p13 and 4q27. Here, we attempted to validate these and six other top findings in 4,000 individuals with T1D, 5,000 controls and 2,997 family trios independent of the WTCCC study. We confirmed unequivocally the associations of 12q24, 12q13, 16p13 and 18p11 (P(follow-up) Asunto(s)
Mapeo Cromosómico
, Diabetes Mellitus Tipo 1/genética
, Predisposición Genética a la Enfermedad
, Genoma Humano
, Adolescente
, Estudios de Casos y Controles
, Humanos
, Polimorfismo de Nucleótido Simple
RESUMEN
BACKGROUND: Hypoketotic hypoglycaemia with suppressed plasma fatty acids and detectable insulin suggests congenital hyperinsulinism (CHI). Severe hypoketotic hypoglycaemia mimicking hyperinsulinism but without detectable insulin has recently been described in syndromic individuals with mosaic genetic activation of post-receptor insulin signalling. We set out to expand understanding of this entity focusing on metabolic phenotypes. METHODS: Metabolic profiling, candidate gene and exome sequencing were performed in six infants with hypoketotic, hypoinsulinaemic hypoglycaemia, with or without syndromic features. Additional signalling studies were carried out in dermal fibroblasts from two individuals. RESULTS: Two infants had no syndromic features. One was mistakenly diagnosed with CHI. One had mild features of megalencephaly-capillary malformation-polymicrogyria (MCAP) syndrome, one had non-specific macrosomia, and two had complex syndromes. All required intensive treatment to maintain euglycaemia, with CHI-directed therapies being ineffective. Pathogenic PIK3CA variants were found in two individuals - de novo germline c.323G>A (p.Arg108His) in one non-syndromic infant and postzygotic mosaic c.2740G>A (p.Gly914Arg) in the infant with MCAP. No causal variants were proven in the other individuals despite extensive investigation, although rare variants in mTORC components were identified in one. No increased PI3K signalling in fibroblasts of two individuals was seen. CONCLUSIONS: We expand the spectrum of PI3K-related hypoinsulinaemic hypoketotic hypoglycaemia. We demonstrate that pathogenic germline variants activating post-insulin-receptor signalling may cause non-syndromic hypoinsulinaemic hypoketotic hypoglycaemia closely resembling CHI. This distinct biochemical footprint should be sought and differentiated from CHI in infantile hypoglycaemia. To facilitate adoption of this differential diagnosis, we propose the term "pseudohyperinsulinism".
Asunto(s)
Hiperinsulinismo Congénito , Proteínas Proto-Oncogénicas c-akt , Lactante , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Insulina , Hiperinsulinismo Congénito/genética , Fosfatidilinositol 3-Quinasas/metabolismoRESUMEN
Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 x 10(-5)], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Globulina de Unión a Hormona Sexual/genética , Globulina de Unión a Hormona Sexual/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Hormonas Esteroides Gonadales/sangre , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de RiesgoRESUMEN
BACKGROUND & AIMS: Human intestinal epithelial organoids (IEOs) are a powerful tool to model major aspects of intestinal development, health, and diseases because patient-derived cultures retain many features found in vivo. A necessary aspect of the organoid model is the requirement to expand cultures in vitro through several rounds of passaging. This is of concern because the passaging of cells has been shown to affect cell morphology, ploidy, and function. METHODS: Here, we analyzed 173 human IEO lines derived from the small and large bowel and examined the effect of culture duration on DNA methylation (DNAm). Furthermore, we tested the potential impact of DNAm changes on gene expression and cellular function. RESULTS: Our analyses show a reproducible effect of culture duration on DNAm in a large discovery cohort as well as 2 publicly available validation cohorts generated in different laboratories. Although methylation changes were seen in only approximately 8% of tested cytosine-phosphate-guanine dinucleotides (CpGs) and global cellular function remained stable, a subset of methylation changes correlated with altered gene expression at baseline as well as in response to inflammatory cytokine exposure and withdrawal of Wnt agonists. Importantly, epigenetic changes were found to be enriched in genomic regions associated with colonic cancer and distant to the site of replication, indicating similarities to malignant transformation. CONCLUSIONS: Our study shows distinct culture-associated epigenetic changes in mucosa-derived human IEOs, some of which appear to impact gene transcriptomic and cellular function. These findings highlight the need for future studies in this area and the importance of considering passage number as a potentially confounding factor.
Asunto(s)
Metilación de ADN , Organoides , Humanos , Intestinos , Epigénesis Genética , Mucosa IntestinalRESUMEN
Recent genome-wide association studies (GWAS) have identified multiple risk loci for common obesity (FTO, MC4R, TMEM18, GNPDA2, SH2B1, KCTD15, MTCH2, NEGR1 and PCSK1). Here we extend those studies by examining associations with adiposity and type 2 diabetes in Swedish adults. The nine single nucleotide polymorphisms (SNPs) were genotyped in 3885 non-diabetic and 1038 diabetic individuals with available measures of height, weight and body mass index (BMI). Adipose mass and distribution were objectively assessed using dual-energy X-ray absorptiometry in a sub-group of non-diabetics (n = 2206). In models with adipose mass traits, BMI or obesity as outcomes, the most strongly associated SNP was FTO rs1121980 (P < 0.001). Five other SNPs (SH2B1 rs7498665, MTCH2 rs4752856, MC4R rs17782313, NEGR1 rs2815752 and GNPDA2 rs10938397) were significantly associated with obesity. To summarize the overall genetic burden, a weighted risk score comprising a subset of SNPs was constructed; those in the top quintile of the score were heavier (+2.6 kg) and had more total (+2.4 kg), gynoid (+191 g) and abdominal (+136 g) adipose tissue than those in the lowest quintile (all P < 0.001). The genetic burden score significantly increased diabetes risk, with those in the highest quintile (n = 193/594 cases/controls) being at 1.55-fold (95% CI 1.21-1.99; P < 0.0001) greater risk of type 2 diabetes than those in the lowest quintile (n = 130/655 cases/controls). In summary, we have statistically replicated six of the previously associated obese-risk loci and our results suggest that the weight-inducing effects of these variants are explained largely by increased adipose accumulation.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Obesidad/genética , Tejido Adiposo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , SueciaRESUMEN
Eosinophilic esophagitis (EoE) is a leading cause of dysphagia and food impaction in children and adults. The diagnosis relies on histological examination of esophageal mucosal biopsies and requires the presence of > 15 eosinophils per high-powered field. Potential pitfalls include the impact of biopsy sectioning as well as regional variations of eosinophil density. We performed genome-wide DNA methylation analyses on 30 esophageal biopsies obtained from children diagnosed with EoE (n = 7) and matched controls (n = 13) at the time of diagnosis as well as following first-line treatment. Analyses revealed striking disease-associated differences in mucosal DNA methylation profiles in children diagnosed with EoE, highlighting the potential for these epigenetic signatures to be developed into clinically applicable biomarkers.
Asunto(s)
Metilación de ADN/genética , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/patología , Estudio de Asociación del Genoma Completo/métodos , Adolescente , Biopsia , Niño , Preescolar , Esófago/patología , Femenino , Humanos , Italia , Masculino , Estudios ProspectivosRESUMEN
Obesity is genetically heterogeneous with monogenic and complex polygenic forms. Using exome and targeted sequencing in 2,737 severely obese cases and 6,704 controls, we identified three genes (PHIP, DGKI, and ZMYM4) with an excess burden of very rare predicted deleterious variants in cases. In cells, we found that nuclear PHIP (pleckstrin homology domain interacting protein) directly enhances transcription of pro-opiomelanocortin (POMC), a neuropeptide that suppresses appetite. Obesity-associated PHIP variants repressed POMC transcription. Our demonstration that PHIP is involved in human energy homeostasis through transcriptional regulation of central melanocortin signaling has potential diagnostic and therapeutic implications for patients with obesity and developmental delay. Additionally, we found an excess burden of predicted deleterious variants involving genes nearest to loci from obesity genome-wide association studies. Genes and gene sets influencing obesity with variable penetrance provide compelling evidence for a continuum of causality in the genetic architecture of obesity, and explain some of its missing heritability.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Obesidad Infantil/genética , Proopiomelanocortina/genética , Adulto , Animales , Células Cultivadas , Niño , Chlorocebus aethiops , Exoma , Femenino , Variación Genética/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana EdadRESUMEN
For most associations of common single nucleotide polymorphisms (SNPs) with common diseases, the genetic model of inheritance is unknown. The authors extended and applied a Bayesian meta-analysis approach to data from 19 studies on 17 replicated associations with type 2 diabetes. For 13 SNPs, the data fitted very well to an additive model of inheritance for the diabetes risk allele; for 4 SNPs, the data were consistent with either an additive model or a dominant model; and for 2 SNPs, the data were consistent with an additive or recessive model. Results were robust to the use of different priors and after exclusion of data for which index SNPs had been examined indirectly through proxy markers. The Bayesian meta-analysis model yielded point estimates for the genetic effects that were very similar to those previously reported based on fixed- or random-effects models, but uncertainty about several of the effects was substantially larger. The authors also examined the extent of between-study heterogeneity in the genetic model and found generally small between-study deviation values for the genetic model parameter. Heterosis could not be excluded for 4 SNPs. Information on the genetic model of robustly replicated association signals derived from genome-wide association studies may be useful for predictive modeling and for designing biologic and functional experiments.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Modelos Genéticos , Polimorfismo de Nucleótido Simple/genética , Teorema de Bayes , HumanosRESUMEN
Gene-gene interaction analyses have been suggested as a potential strategy to help identify common disease susceptibility genes. Recently, evidence of a statistical interaction between polymorphisms in two negative immunoregulatory genes, CBLB and CTLA4, has been reported in type 1 diabetes (T1D). This study, in 480 Danish families, reported an association between T1D and a synonymous coding SNP in exon 12 of the CBLB gene (rs3772534 G>A; minor allele frequency, MAF=0.24; derived relative risk, RR for G allele=1.78; P=0.046). Furthermore, evidence of a statistical interaction with the known T1D susceptibility-associated CTLA4 polymorphism rs3087243 (laboratory name CT60, G>A) was reported (P<0.0001), such that the CBLB SNP rs3772534 G allele was overtransmitted to offspring with the CTLA4 rs3087243 G/G genotype. We have, therefore, attempted to obtain additional support for this finding in both large family and case-control collections. In a primary analysis, no evidence for an association of the CBLB SNP rs3772534 with disease was found in either sample set (2162 parent-child trios, P=0.33; 3453 cases and 3655 controls, P=0.69). In the case-only statistical interaction analysis between rs3772534 and rs3087243, there was also no support for an effect (1994 T1D affected offspring, and 3215 cases, P=0.92). These data highlight the need for large, well-characterized populations, offering the possibility of obtaining additional support for initial observations owing to the low prior probability of identifying reproducible evidence of gene-gene interactions in the analysis of common disease-associated variants in human populations.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Antígenos CD/genética , Antígenos de Diferenciación/genética , Diabetes Mellitus Tipo 1/genética , Proteínas Proto-Oncogénicas c-cbl/genética , Animales , Antígeno CTLA-4 , Estudios de Casos y Controles , Dinamarca , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Polimorfismo de Nucleótido Simple/genética , RatasRESUMEN
BACKGROUND: As genes associated with immune-mediated diseases have an increased prior probability of being associated with other immune-mediated diseases, we tested three such genes, IL23R, IRF5 and CD40, for an association with type 1 diabetes. In addition, we tested seven genes, TAF5L, PDCD1, TCF7, IL12B, IL6, ICAM1 and TBX21, with published marginal or inconsistent evidence of an association with type 1 diabetes. METHODS: We genotyped reported polymorphisms of the ten genes, nonsynonymous SNPs (nsSNPs) and, for the IL12B and IL6 regions, tag SNPs in up to 7,888 case, 8,858 control and 3,142 parent-child trio samples. In addition, we analysed data from the Wellcome Trust Case Control Consortium genome-wide association study to determine whether there was any further evidence of an association in each gene region. RESULTS: We found some evidence of associations between type 1 diabetes and TAF5L, PDCD1, TCF7 and IL6 (ORs = 1.05 - 1.13; P = 0.0291 - 4.16 x 10-4). No evidence of an association was obtained for IL12B, IRF5, IL23R, ICAM1, TBX21 and CD40, although there was some evidence of an association (OR = 1.10; P = 0.0257) from the genome-wide association study for the ICAM1 region. CONCLUSION: We failed to exclude the possibility of some effect in type 1 diabetes for TAF5L, PDCD1, TCF7, IL6 and ICAM1. Additional studies, of these and other candidate genes, employing much larger sample sizes and analysis of additional polymorphisms in each gene and its flanking region will be required to ascertain their contributions to type 1 diabetes susceptibility.
Asunto(s)
Diabetes Mellitus Tipo 1/genética , Predisposición Genética a la Enfermedad , Antígenos CD/genética , Proteínas Reguladoras de la Apoptosis/genética , Estudios de Casos y Controles , Marcadores Genéticos , Genotipo , Humanos , Molécula 1 de Adhesión Intercelular/genética , Interleucina-6/genética , Modelos Logísticos , Polimorfismo de Nucleótido Simple , Receptor de Muerte Celular Programada 1 , Factor 1 de Transcripción de Linfocitos T/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genéticaRESUMEN
BACKGROUND: In an effort to locate susceptibility genes for type 1 diabetes (T1D) several genome-wide linkage scans have been undertaken. A chromosomal region designated IDDM10 retained genome-wide significance in a combined analysis of the main linkage scans. Here, we studied sequence polymorphisms in 23 Mb on chromosome 10p12-q11, including the putative IDDM10 region, to identify genes associated with T1D. RESULTS: Initially, we resequenced the functional candidate genes, CREM and SDF1, located in this region, genotyped 13 tag single nucleotide polymorphisms (SNPs) and found no association with T1D. We then undertook analysis of the whole 23 Mb region. We constructed and sequenced a contig tile path from two bacterial artificial clone libraries. By comparison with a clone library from an unrelated person used in the Human Genome Project, we identified 12,058 SNPs. We genotyped 303 SNPs and 25 polymorphic microsatellite markers in 765 multiplex T1D families and followed up 22 associated polymorphisms in up to 2,857 families. We found nominal evidence of association in six loci (P = 0.05 - 0.0026), located near the PAPD1 gene. Therefore, we resequenced 38.8 kb in this region, found 147 SNPs and genotyped 84 of them in the T1D families. We also tested 13 polymorphisms in the PAPD1 gene and in five other loci in 1,612 T1D patients and 1,828 controls from the UK. Overall, only the D10S193 microsatellite marker located 28 kb downstream of PAPD1 showed nominal evidence of association in both T1D families and in the case-control sample (P = 0.037 and 0.03, respectively). CONCLUSION: We conclude that polymorphisms in the CREM and SDF1 genes have no major effect on T1D. The weak T1D association that we detected in the association scan near the PAPD1 gene may be either false or due to a small genuine effect, and cannot explain linkage at the IDDM10 region.
Asunto(s)
Cromosomas Humanos Par 10 , Diabetes Mellitus Tipo 1/genética , Estudios de Casos y Controles , Cartilla de ADN , Femenino , Frecuencia de los Genes , Marcadores Genéticos , Genotipo , Humanos , Masculino , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido SimpleRESUMEN
Shared genetic aetiology may explain the co-occurrence of diseases in individuals more often than expected by chance. On identifying associated variants shared between two traits, one objective is to determine whether such overlap may be explained by specific genomic characteristics (eg, functional annotation). In clinical studies, inter-rater agreement approaches assess concordance among expert opinions on the presence/absence of a complex disease for each subject. We adapt a two-stage inter-rater agreement model to the genetic association setting to identify features predictive of overlap variants, while accounting for their marginal trait associations. The resulting corrected overlap and marginal enrichment test (COMET) also assesses enrichment at the individual trait level. Multiple categories may be tested simultaneously and the method is computationally efficient, not requiring permutations to assess significance. In an extensive simulation study, COMET identifies features predictive of enrichment with high power and has well-calibrated type I error. In contrast, testing for overlap with a single-trait enrichment test has inflated type I error. COMET is applied to three glycaemic traits using a set of functional annotation categories as predictors, followed by further analyses that focus on tissue-specific regulatory variants. The results support previous findings that regulatory variants in pancreatic islets are enriched for fasting glucose-associated variants, and give insight into differences/similarities between characteristics of variants associated with glycaemic traits. Also, despite regulatory variants in pancreatic islets being enriched for variants that are marginally associated with fasting glucose and fasting insulin, there is no enrichment of shared variants between the traits.
Asunto(s)
Glucemia/genética , Modelos Genéticos , Mutación , Predisposición Genética a la Enfermedad , Humanos , Carácter Cuantitativo HeredableRESUMEN
Common genetic variants at the ARL15 locus are associated with plasma adiponectin, insulin and HDL cholesterol concentrations, obesity, and coronary atherosclerosis. The ARL15 gene encodes a small GTP-binding protein whose function is currently unknown. In this study adipocyte-autonomous roles for ARL15 were investigated using conditional knockdown of Arl15 in murine 3T3-L1 (pre)adipocytes. Arl15 knockdown in differentiated adipocytes impaired adiponectin secretion but not adipsin secretion or insulin action, while in preadipocytes it impaired adipogenesis. In differentiated adipocytes GFP-tagged ARL15 localized predominantly to the Golgi with lower levels detected at the plasma membrane and intracellular vesicles, suggesting involvement in intracellular trafficking. Sequencing of ARL15 in 375 severely insulin resistant patients identified four rare heterozygous variants, including an early nonsense mutation in a proband with femorogluteal lipodystrophy and non classical congenital adrenal hyperplasia, and an essential splice site mutation in a proband with partial lipodystrophy and a history of childhood yolk sac tumour. No nonsense or essential splice site mutations were found in 2,479 controls, while five such variants were found in the ExAC database. These findings provide evidence that ARL15 plays a role in adipocyte differentiation and adiponectin secretion, and raise the possibility that human ARL15 haploinsufficiency predisposes to lipodystrophy.
Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Adiponectina/metabolismo , Diferenciación Celular , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Células 3T3-L1 , Factores de Ribosilacion-ADP/genética , Adipogénesis , Adulto , Animales , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Aparato de Golgi/metabolismo , Células HEK293 , Haploinsuficiencia , Humanos , Resistencia a la Insulina , Lipodistrofia/genética , Lipodistrofia/metabolismo , Masculino , Síndrome Metabólico/genética , Ratones , Persona de Mediana Edad , Transporte de Proteínas , Adulto JovenRESUMEN
OBJECTIVE: Genetic activation of the insulin signal-transducing kinase AKT2 causes syndromic hypoketotic hypoglycaemia without elevated insulin. Mosaic activating mutations in class 1A phospatidylinositol-3-kinase (PI3K), upstream from AKT2 in insulin signalling, are known to cause segmental overgrowth, but the metabolic consequences have not been systematically reported. We assess the metabolic phenotype of 22 patients with mosaic activating mutations affecting PI3K, thereby providing new insight into the metabolic function of this complex node in insulin signal transduction. METHODS: Three patients with megalencephaly, diffuse asymmetric overgrowth, hypoketotic, hypoinsulinaemic hypoglycaemia and no AKT2 mutation underwent further genetic, clinical and metabolic investigation. Signalling in dermal fibroblasts from one patient and efficacy of the mTOR inhibitor Sirolimus on pathway activation were examined. Finally, the metabolic profile of a cohort of 19 further patients with mosaic activating mutations in PI3K was assessed. RESULTS: In the first three patients, mosaic mutations in PIK3CA (p.Gly118Asp or p.Glu726Lys) or PIK3R2 (p.Gly373Arg) were found. In different tissue samples available from one patient, the PIK3CA p.Glu726Lys mutation was present at burdens from 24% to 42%, with the highest level in the liver. Dermal fibroblasts showed increased basal AKT phosphorylation which was potently suppressed by Sirolimus. Nineteen further patients with mosaic mutations in PIK3CA had neither clinical nor biochemical evidence of hypoglycaemia. CONCLUSIONS: Mosaic mutations activating class 1A PI3K cause severe non-ketotic hypoglycaemia in a subset of patients, with the metabolic phenotype presumably related to the extent of mosaicism within the liver. mTOR or PI3K inhibitors offer the prospect for future therapy.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Hipoglucemia/genética , Insulina/genética , Megalencefalia/genética , Mosaicismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Preescolar , Femenino , Humanos , Hipoglucemia/diagnóstico , Hipoglucemia/metabolismo , Insulina/metabolismo , Masculino , Megalencefalia/diagnóstico , Megalencefalia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismoRESUMEN
MFN2 encodes mitofusin 2, a membrane-bound mediator of mitochondrial membrane fusion and inter-organelle communication. MFN2 mutations cause axonal neuropathy, with associated lipodystrophy only occasionally noted, however homozygosity for the p.Arg707Trp mutation was recently associated with upper body adipose overgrowth. We describe similar massive adipose overgrowth with suppressed leptin expression in four further patients with biallelic MFN2 mutations and at least one p.Arg707Trp allele. Overgrown tissue was composed of normal-sized, UCP1-negative unilocular adipocytes, with mitochondrial network fragmentation, disorganised cristae, and increased autophagosomes. There was strong transcriptional evidence of mitochondrial stress signalling, increased protein synthesis, and suppression of signatures of cell death in affected tissue, whereas mitochondrial morphology and gene expression were normal in skin fibroblasts. These findings suggest that specific MFN2 mutations cause tissue-selective mitochondrial dysfunction with increased adipocyte proliferation and survival, confirm a novel form of excess adiposity with paradoxical suppression of leptin expression, and suggest potential targeted therapies.
Asunto(s)
Tejido Adiposo/fisiopatología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Hiperplasia/fisiopatología , Leptina/biosíntesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Cuerpo Humano , HumanosRESUMEN
Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.
Asunto(s)
Tejido Adiposo/patología , Enfermedades Cardiovasculares/fisiopatología , Genómica/métodos , Resistencia a la Insulina/genética , Enfermedades Metabólicas/fisiopatología , Obesidad/complicaciones , Tejido Adiposo/metabolismo , Animales , Glucemia/análisis , Índice de Masa Corporal , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Obesidad/genética , FenotipoRESUMEN
BACKGROUND: The identification of the HLA class II, insulin (INS), CTLA-4 and PTPN22 genes as determinants of type 1 diabetes (T1D) susceptibility indicates that fine tuning of the immune system is centrally involved in disease development. Some genes have been shown to affect several immune-mediated diseases. Therefore, we tested the hypothesis that alleles of susceptibility genes previously associated with other immune-mediated diseases might perturb immune homeostasis, and hence also associate with predisposition to T1D. METHODS: We resequenced and genotyped tag single nucleotide polymorphisms (SNPs) from two genes, CRP and FCER1B, and genotyped 27 disease-associated polymorphisms from thirteen gene regions, namely FCRL3, CFH, SLC9A3R1, PADI4, RUNX1, SPINK5, IL1RN, IL1RA, CARD15, IBD5-locus (including SLC22A4), LAG3, ADAM33 and NFKB1. These genes have been associated previously with susceptibility to a range of immune-mediated diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Graves' disease (GD), psoriasis, psoriatic arthritis (PA), atopy, asthma, Crohn disease and multiple sclerosis (MS). Our T1D collections are divided into three sample subsets, consisting of set 1 families (up to 754 families), set 2 families (up to 743 families), and a case-control collection (ranging from 1,500 to 4,400 cases and 1,500 to 4,600 controls). Each SNP was genotyped in one or more of these subsets. Our study typically had approximately 80% statistical power for a minor allele frequency (MAF) >5% and odds ratios (OR) of 1.5 with the type 1 error rate, alpha = 0.05. RESULTS: We found no evidence of association with T1D at most of the loci studied 0.02