Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 485(7396): 128-32, 2012 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-22495310

RESUMEN

In the fasted state, increases in circulating glucagon promote hepatic glucose production through induction of the gluconeogenic program. Triggering of the cyclic AMP pathway increases gluconeogenic gene expression via the de-phosphorylation of the CREB co-activator CRTC2 (ref. 1). Glucagon promotes CRTC2 dephosphorylation in part through the protein kinase A (PKA)-mediated inhibition of the CRTC2 kinase SIK2. A number of Ser/Thr phosphatases seem to be capable of dephosphorylating CRTC2 (refs 2, 3), but the mechanisms by which hormonal cues regulate these enzymes remain unclear. Here we show in mice that glucagon stimulates CRTC2 dephosphorylation in hepatocytes by mobilizing intracellular calcium stores and activating the calcium/calmodulin-dependent Ser/Thr-phosphatase calcineurin (also known as PP3CA). Glucagon increased cytosolic calcium concentration through the PKA-mediated phosphorylation of inositol-1,4,5-trisphosphate receptors (InsP(3)Rs), which associate with CRTC2. After their activation, InsP(3)Rs enhanced gluconeogenic gene expression by promoting the calcineurin-mediated dephosphorylation of CRTC2. During feeding, increases in insulin signalling reduced CRTC2 activity via the AKT-mediated inactivation of InsP(3)Rs. InsP(3)R activity was increased in diabetes, leading to upregulation of the gluconeogenic program. As hepatic downregulation of InsP(3)Rs and calcineurin improved circulating glucose levels in insulin resistance, these results demonstrate how interactions between cAMP and calcium pathways at the level of the InsP(3)R modulate hepatic glucose production under fasting conditions and in diabetes.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus/metabolismo , Ayuno/metabolismo , Gluconeogénesis , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Hígado/metabolismo , Animales , Calcineurina/metabolismo , Calcio/metabolismo , Señalización del Calcio , Células Cultivadas , AMP Cíclico/metabolismo , Diabetes Mellitus/sangre , Diabetes Mellitus/genética , Ayuno/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Glucagón/farmacología , Gluconeogénesis/genética , Células HEK293 , Hepatocitos/metabolismo , Humanos , Resistencia a la Insulina , Hígado/citología , Ratones , Fosforilación/efectos de los fármacos , Transactivadores/metabolismo , Factores de Transcripción
2.
Proc Natl Acad Sci U S A ; 111(48): 17116-21, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25404345

RESUMEN

In the fasted state, increases in catecholamine signaling promote adipocyte function via the protein kinase A-mediated phosphorylation of cyclic AMP response element binding protein (CREB). CREB activity is further up-regulated in obesity, despite reductions in catecholamine signaling, where it contributes to the development of insulin resistance. Here we show that obesity promotes the CREB binding protein (CBP)-mediated acetylation of CREB at Lys136 in adipose. Under lean conditions, CREB acetylation was low due to an association with the energy-sensing NAD(+)-dependent deacetylase SirT1; amounts of acetylated CREB were increased in obesity, when SirT1 undergoes proteolytic degradation. Whereas CREB phosphorylation stimulated an association with the KIX domain of CBP, Lys136 acetylation triggered an interaction with the CBP bromodomain (BRD) that augmented recruitment of this coactivator to the promoter. Indeed, coincident Ser133 phosphorylation and Lys136 acetylation of CREB stimulated the formation of a ternary complex with the KIX and BRD domains of CBP by NMR analysis. As disruption of the CREB:BRD complex with a CBP-specific BRD inhibitor blocked effects of CREB acetylation on target gene expression, our results demonstrate how changes in nutrient status modulate cellular gene expression in response to hormonal signals.


Asunto(s)
Adipocitos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Obesidad/metabolismo , Transducción de Señal , Células 3T3-L1 , Acetilación , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Immunoblotting , Lisina/genética , Lisina/metabolismo , Ratones , Ratones Noqueados , Ratones Obesos , Mutación , Obesidad/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Regiones Promotoras Genéticas/genética , Unión Proteica , Sirtuina 1/genética , Sirtuina 1/metabolismo
3.
Nature ; 468(7326): 933-9, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21164481

RESUMEN

The adipose-derived hormone leptin maintains energy balance in part through central nervous system-mediated increases in sympathetic outflow that enhance fat burning. Triggering of ß-adrenergic receptors in adipocytes stimulates energy expenditure by cyclic AMP (cAMP)-dependent increases in lipolysis and fatty-acid oxidation. Although the mechanism is unclear, catecholamine signalling is thought to be disrupted in obesity, leading to the development of insulin resistance. Here we show that the cAMP response element binding (CREB) coactivator Crtc3 promotes obesity by attenuating ß-adrenergic receptor signalling in adipose tissue. Crtc3 was activated in response to catecholamine signals, when it reduced adenyl cyclase activity by upregulating the expression of Rgs2, a GTPase-activating protein that also inhibits adenyl cyclase activity. As a common human CRTC3 variant with increased transcriptional activity is associated with adiposity in two distinct Mexican-American cohorts, these results suggest that adipocyte CRTC3 may play a role in the development of obesity in humans.


Asunto(s)
Catecolaminas/metabolismo , Metabolismo Energético , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Temperatura Corporal , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Grasas de la Dieta/farmacología , Metabolismo Energético/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Resistencia a la Insulina , Americanos Mexicanos/genética , Ratones , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/metabolismo , Fosforilación , Proteínas RGS/biosíntesis , Proteínas RGS/genética , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/química , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
4.
Proc Natl Acad Sci U S A ; 109(14): 5523-8, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22427360

RESUMEN

Mitochondria are dynamic organelles that play a key role in energy conversion. Optimal mitochondrial function is ensured by a quality-control system tightly coupled to fusion and fission. In this connection, mitofusin 2 (Mfn2) participates in mitochondrial fusion and undergoes repression in muscle from obese or type 2 diabetic patients. Here, we provide in vivo evidence that Mfn2 plays an essential role in metabolic homeostasis. Liver-specific ablation of Mfn2 in mice led to numerous metabolic abnormalities, characterized by glucose intolerance and enhanced hepatic gluconeogenesis. Mfn2 deficiency impaired insulin signaling in liver and muscle. Furthermore, Mfn2 deficiency was associated with endoplasmic reticulum stress, enhanced hydrogen peroxide concentration, altered reactive oxygen species handling, and active JNK. Chemical chaperones or the antioxidant N-acetylcysteine ameliorated glucose tolerance and insulin signaling in liver-specific Mfn2 KO mice. This study provides an important description of a unique unexpected role of Mfn2 coordinating mitochondria and endoplasmic reticulum function, leading to modulation of insulin signaling and glucose homeostasis in vivo.


Asunto(s)
Retículo Endoplásmico/fisiología , GTP Fosfohidrolasas/fisiología , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Mitocondrias/fisiología , Transducción de Señal , Animales , Resistencia a la Insulina , Hígado/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo
5.
Am J Physiol Endocrinol Metab ; 305(10): E1208-21, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23941871

RESUMEN

Mitofusin 2 (Mfn2), a protein that participates in mitochondrial fusion, is required to maintain normal mitochondrial metabolism in skeletal muscle and liver. Given that muscle Mfn2 is repressed in obese or type 2 diabetic subjects, this protein may have a potential pathophysiological role in these conditions. To evaluate whether the metabolic effects of Mfn2 can be dissociated from its function in mitochondrial dynamics, we studied a form of human Mfn2, lacking the two transmembrane domains and the COOH-terminal coiled coil (ΔMfn2). This form localized in mitochondria but did not alter mitochondrial morphology in cells or in skeletal muscle fibers. The expression of ΔMfn2 in mouse skeletal muscle stimulated glucose oxidation and enhanced respiratory control ratio, which occurred in the absence of changes in mitochondrial mass. ΔMfn2 did not stimulate mitochondrial respiration in Mfn2-deficient muscle cells. The expression of ΔMfn2 in mouse liver or in hepatoma cells stimulated gluconeogenesis. In addition, ΔMfn2 activated basal and maximal respiration both in muscle and liver cells. In all, we show that a form of Mfn2 lacking mitochondrial fusion activity stimulates mitochondrial function and enhances glucose metabolism in muscle and liver tissues. This study suggests that Mfn2 regulates metabolism independently of changes in mitochondrial morphology.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Hígado/enzimología , Mitocondrias Hepáticas/fisiología , Mitocondrias Musculares/fisiología , Dinámicas Mitocondriales , Proteínas Mitocondriales/fisiología , Músculo Esquelético/enzimología , Animales , Células Cultivadas , GTP Fosfohidrolasas/química , Expresión Génica , Células HEK293 , Hepatocitos/enzimología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Hepáticas/enzimología , Mitocondrias Musculares/enzimología , Proteínas Mitocondriales/química , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiología , Estructura Terciaria de Proteína , Ratas
6.
Sci Rep ; 10(1): 2259, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32042057

RESUMEN

Glutaminase (GA) catalyzes the first step in mitochondrial glutaminolysis playing a key role in cancer metabolic reprogramming. Humans express two types of GA isoforms: GLS and GLS2. GLS isozymes have been consistently related to cell proliferation, but the role of GLS2 in cancer remains poorly understood. GLS2 is repressed in many tumor cells and a better understanding of its function in tumorigenesis may further the development of new therapeutic approaches. We analyzed GLS2 expression in HCC, GBM and neuroblastoma cells, as well as in monkey COS-7 cells. We studied GLS2 expression after induction of differentiation with phorbol ester (PMA) and transduction with the full-length cDNA of GLS2. In parallel, we investigated cell cycle progression and levels of p53, p21 and c-Myc proteins. Using the baculovirus system, human GLS2 protein was overexpressed, purified and analyzed for posttranslational modifications employing a proteomics LC-MS/MS platform. We have demonstrated a dual targeting of GLS2 in human cancer cells. Immunocytochemistry and subcellular fractionation gave consistent results demonstrating nuclear and mitochondrial locations, with the latter being predominant. Nuclear targeting was confirmed in cancer cells overexpressing c-Myc- and GFP-tagged GLS2 proteins. We assessed the subnuclear location finding a widespread distribution of GLS2 in the nucleoplasm without clear overlapping with specific nuclear substructures. GLS2 expression and nuclear accrual notably increased by treatment of SH-SY5Y cells with PMA and it correlated with cell cycle arrest at G2/M, upregulation of tumor suppressor p53 and p21 protein. A similar response was obtained by overexpression of GLS2 in T98G glioma cells, including downregulation of oncogene c-Myc. Furthermore, human GLS2 was identified as being hypusinated by MS analysis, a posttranslational modification which may be relevant for its nuclear targeting and/or function. Our studies provide evidence for a tumor suppressor role of GLS2 in certain types of cancer. The data imply that GLS2 can be regarded as a highly mobile and multilocalizing protein translocated to both mitochondria and nuclei. Upregulation of GLS2 in cancer cells induced an antiproliferative response with cell cycle arrest at the G2/M phase.


Asunto(s)
Carcinogénesis/metabolismo , Puntos de Control del Ciclo Celular , Diferenciación Celular , Glutaminasa/fisiología , Neoplasias/metabolismo , Animales , Células COS , Línea Celular Tumoral , Proliferación Celular , Chlorocebus aethiops , Células Hep G2 , Humanos
8.
Antioxid Redox Signal ; 19(4): 366-78, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22703557

RESUMEN

AIMS: Glucocorticoids, such as dexamethasone, enhance hepatic energy metabolism and gluconeogenesis partly through changes in mitochondrial function. Mitochondrial function is influenced by the balance between mitochondrial fusion and fission events. However, whether glucocorticoids modulate mitochondrial function through the regulation of mitochondrial dynamics is currently unknown. RESULTS: Here, we report that the effects of dexamethasone on mitochondrial function and gluconeogenesis in hepatoma cells are dependent on the mitochondrial fission protein dynamin-related protein 1 (Drp1). Dexamethasone increased routine oxygen consumption, maximal respiratory capacity, superoxide anion, proton leak, and gluconeogenesis in hepatoma cells. Under these conditions, dexamethasone altered mitochondrial morphology, which was paralleled by a large increase in Drp1 expression, and reduced mitofusin 1 (Mfn1) and Mfn2. In vivo dexamethasone treatment also enhanced Drp1 expression in mouse liver. On the basis of these observations, we analyzed the dependence on the Drp1 function of dexamethasone effects on mitochondrial respiration and gluconeogenesis. We show that the increase in mitochondrial respiration and gluconeogenesis induced by dexamethasone are hampered by the inhibition of Drp1 function. INNOVATION: Our findings provide the first evidence that the effects of glucocorticoids on hepatic metabolism require the mitochondrial fission protein Drp1. CONCLUSION: In summary, we demonstrate that the mitochondrial effects of dexamethasone both on mitochondrial respiration and on the gluconeogenic pathway depend on Drp1.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Dinaminas/metabolismo , Glucocorticoides/farmacología , Animales , Western Blotting , Línea Celular , Dexametasona/farmacología , Gluconeogénesis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Mitocondrias , Consumo de Oxígeno/efectos de los fármacos , Ratas , Superóxidos/metabolismo
9.
Diabetes ; 56(9): 2185-93, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17563068

RESUMEN

OBJECTIVE: Neuregulins are growth factors that are essential for myogenesis and regulate muscle metabolism. The addition of a recombinant neuregulin-1 isoform, heregulin-beta1(177-244) (Hrg), containing 3 nmol/l of the bioactive epidermal growth factor-like domain, to developing L6E9 myocytes has acute and chronic effects on glucose uptake and enhances myogenesis. Here, we studied the metabolic adaptation of myocytes to chronic treatments with Hrg. RESEARCH DESIGN AND METHODS: L6E9 and C2C12 myocytes were chronically treated with low concentrations of Hrg (3 pmol/l) that do not induce myogenesis. We analyzed the effects of Hrg on cellular oxidative metabolism and insulin sensitivity and explored the mechanisms of action. RESULTS: Hrg increased the cell content of GLUT4 without affecting basal glucose uptake. Glucose and palmitate oxidation increased in Hrg-treated cells, whereas lactate release decreased. Hrg increased the abundance of oxidative phosphorylation (OXPHOS) subunits, enhanced mitochondrial membrane potential, and induced the expression of peroxisome proliferator-activated receptor (PPAR)gamma coactivator1alpha and PPARdelta. Furthermore, we identified PPARdelta as an essential mediator of the stimulatory effects of Hrg on the expression of OXPHOS subunits. The higher oxidative capacity of L6E9 myotubes after neuregulin treatment also paralleled an increase in insulin sensitivity and insulin signaling potency. CONCLUSIONS: These results indicate that neuregulins act as key modulators of oxidative capacity and insulin sensitivity in muscle cells.


Asunto(s)
Insulina/fisiología , Mitocondrias Musculares/fisiología , Músculo Esquelético/fisiología , Neurregulina-1/farmacología , Neurregulinas/fisiología , Consumo de Oxígeno/fisiología , Animales , Diferenciación Celular , Línea Celular , Potencial de la Membrana Mitocondrial/fisiología , Células Musculares/citología , Células Musculares/efectos de los fármacos , Células Musculares/fisiología , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas
10.
PLoS One ; 2(11): e1183, 2007 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18030323

RESUMEN

BACKGROUND: Diabetes is characterized by reduced thyroid function and altered myogenesis after muscle injury. Here we identify a novel component of thyroid hormone action that is repressed in diabetic rat muscle. METHODOLOGY/PRINCIPAL FINDINGS: We have identified a gene, named DOR, abundantly expressed in insulin-sensitive tissues such as skeletal muscle and heart, whose expression is highly repressed in muscle from obese diabetic rats. DOR expression is up-regulated during muscle differentiation and its loss-of-function has a negative impact on gene expression programmes linked to myogenesis or driven by thyroid hormones. In agreement with this, DOR enhances the transcriptional activity of the thyroid hormone receptor TR(alpha1). This function is driven by the N-terminal part of the protein. Moreover, DOR physically interacts with TR( alpha1) and to T(3)-responsive promoters, as shown by ChIP assays. T(3) stimulation also promotes the mobilization of DOR from its localization in nuclear PML bodies, thereby indicating that its nuclear localization and cellular function may be related. CONCLUSIONS/SIGNIFICANCE: Our data indicate that DOR modulates thyroid hormone function and controls myogenesis. DOR expression is down-regulated in skeletal muscle in diabetes. This finding may be of relevance for the alterations in muscle function associated with this disease.


Asunto(s)
Proteínas Musculares/fisiología , Receptores de Hormona Tiroidea/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Humanos , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Ratas , Ratas Zucker , Receptores de Hormona Tiroidea/química , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Hormonas Tiroideas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA