RESUMEN
Actin-binding filamin C (FLNC) is expressed in cardiomyocytes, where it localizes to Z-discs, sarcolemma, and intercalated discs. Although FLNC truncation variants (FLNCtv) are an established cause of arrhythmias and heart failure, changes in biomechanical properties of cardiomyocytes are mostly unknown. Thus, we investigated the mechanical properties of human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) carrying FLNCtv. CRISPR/Cas9 genome-edited homozygous FLNCKO-/- hiPSC-CMs and heterozygous knock-out FLNCKO+/- hiPSC-CMs were analyzed and compared to wild-type FLNC (FLNCWT) hiPSC-CMs. Atomic force microscopy (AFM) was used to perform micro-indentation to evaluate passive and dynamic mechanical properties. A qualitative analysis of the beating traces showed gene dosage-dependent-manner "irregular" peak profiles in FLNCKO+/- and FLNCKO-/- hiPSC-CMs. Two Young's moduli were calculated: E1, reflecting the compression of the plasma membrane and actin cortex, and E2, including the whole cell with a cytoskeleton and nucleus. Both E1 and E2 showed decreased stiffness in mutant FLNCKO+/- and FLNCKO-/- iPSC-CMs compared to that in FLNCWT. The cell adhesion force and work of adhesion were assessed using the retraction curve of the SCFS. Mutant FLNC iPSC-CMs showed gene dosage-dependent decreases in the work of adhesion and adhesion forces from the heterozygous FLNCKO+/- to the FLNCKO-/- model compared to FLNCWT, suggesting damaged cytoskeleton and membrane structures. Finally, we investigated the effect of crenolanib on the mechanical properties of hiPSC-CMs. Crenolanib is an inhibitor of the Platelet-Derived Growth Factor Receptor α (PDGFRA) pathway which is upregulated in FLNCtv hiPSC-CMs. Crenolanib was able to partially rescue the stiffness of FLNCKO-/- hiPSC-CMs compared to control, supporting its potential therapeutic role.
Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Fenómenos Biomecánicos , Filaminas/metabolismo , Actinas/metabolismo , MiocardioRESUMEN
Carbon nanotubes (CNTs) have become promising advanced materials and a new tool to specifically interact with electroresponsive cells. Likewise, conductive polymers (CP) appear promising electroactive biomaterial for proliferation of cells. Herein, we have investigated CNT blends with two different conductive polymers, polypyrrole/CNT (PPy/CNT) and PEDOT/CNT to evaluate the growth, survival, and beating behavior of neonatal rat ventricular myocytes (NRVM). The combination of CP/CNT not only shows excellent biocompatibility on NRVM, after 2 weeks of culture, but also exerts functional effects on networks of cardiomyocytes. NRVMs cultured on CNT-based substrates exhibited improved cellular function, i.e., homogeneous, non-arrhythmogenic, and more frequent spontaneous beating; particularly PEDOT/CNT substrates, which yielded to higher beating amplitudes, thus suggesting a more mature cardiac phenotype. Furthermore, cells presented enhanced structure: aligned sarcomeres, organized and abundant Connexin 43 (Cx43). Finally, no signs of induced hypertrophy were observed. In conclusion, the combination of CNT with CP produces high viability and promotes cardiac functionality, suggesting great potential to generate scaffolding supports for cardiac tissue engineering.
Asunto(s)
Miocitos Cardíacos , Nanotubos de Carbono , Ratas , Animales , Polímeros , Andamios del Tejido , Animales Recién Nacidos , PirrolesRESUMEN
BACKGROUND: Cardiac fibroblasts are the main non-myocyte population responsible for extracellular matrix (ECM) production. During perinatal development, fibroblast expansion coincides with the transition from hyperplastic to hypertrophic myocardial growth. Therefore, we investigated the consequences of fibroblast loss at the time of cardiomyocyte maturation by depleting fibroblasts in the perinatal mouse. METHODS AND RESULTS: We evaluated the microenvironment of the perinatal heart in the absence of fibroblasts and the potential functional impact of fibroblast loss in regulation of cardiomyocyte cell cycle arrest and binucleation. Cre-mediated expression of diphtheria toxin A in PDGFRα expressing cells immediately after birth eliminated 70-80% of the cardiac fibroblasts. At postnatal day 5, hearts lacking fibroblasts appeared similar to controls with normal morphology and comparable numbers of endothelial and smooth muscle cells, despite a pronounced reduction in fibrillar collagen. Immunoblotting and proteomic analysis of control and fibroblast-deficient hearts identified differential abundance of several ECM proteins. In addition, fibroblast loss decreased tissue stiffness and resulted in increased cardiomyocyte mitotic index, DNA synthesis, and cytokinesis. Moreover, decellularized matrix from fibroblast-deficient hearts promoted cardiomyocyte DNA replication. While cardiac architecture was not overtly affected by fibroblast reduction, few pups survived past postnatal day 11, suggesting an overall requirement for PDGFRα expressing fibroblasts. CONCLUSIONS: These studies demonstrate the key role of fibroblasts in matrix production and cardiomyocyte cross-talk during mouse perinatal heart maturation and revealed that fibroblast-derived ECM may modulate cardiomyocyte maturation in vivo. Neonatal depletion of fibroblasts demonstrated that although hearts can tolerate reduced ECM composition, fibroblast loss eventually leads to perinatal death as the approach simultaneously reduced fibroblast populations in other organs.
Asunto(s)
Proteómica , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Animales , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Embarazo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismoRESUMEN
BACKGROUND: Diastolic dysfunction (DD) is associated with the development of heart failure and contributes to the pathogenesis of other cardiac maladies, including atrial fibrillation. Inhibition of histone deacetylases (HDACs) has been shown to prevent DD by enhancing myofibril relaxation. We addressed the therapeutic potential of HDAC inhibition in a model of established DD with preserved ejection fraction. METHODS: Four weeks after uninephrectomy and implantation with deoxycorticosterone acetate pellets, when DD was clearly evident, 1 cohort of mice was administered the clinical-stage HDAC inhibitor ITF2357/Givinostat. Echocardiography, blood pressure measurements, and end point invasive hemodynamic analyses were performed. Myofibril mechanics and intact cardiomyocyte relaxation were assessed ex vivo. Cardiac fibrosis was evaluated by picrosirius red staining and second harmonic generation microscopy of left ventricle (LV) sections, RNA sequencing of LV mRNA, mass spectrometry-based evaluation of decellularized LV biopsies, and atomic force microscopy determination of LV stiffness. Mechanistic studies were performed with primary rat and human cardiac fibroblasts. RESULTS: HDAC inhibition normalized DD without lowering blood pressure in this model of systemic hypertension. In contrast to previous models, myofibril relaxation was unimpaired in uninephrectomy/deoxycorticosterone acetate mice. Furthermore, cardiac fibrosis was not evident in any mouse cohort on the basis of picrosirius red staining or second harmonic generation microscopy. However, mass spectrometry revealed induction in the expression of >100 extracellular matrix proteins in LVs of uninephrectomy/deoxycorticosterone acetate mice, which correlated with profound tissue stiffening based on atomic force microscopy. ITF2357/Givinostat treatment blocked extracellular matrix expansion and LV stiffening. The HDAC inhibitor was subsequently shown to suppress cardiac fibroblast activation, at least in part, by blunting recruitment of the profibrotic chromatin reader protein BRD4 (bromodomain-containing protein 4) to key gene regulatory elements. CONCLUSIONS: These findings demonstrate the potential of HDAC inhibition as a therapeutic intervention to reverse existing DD and establish blockade of extracellular matrix remodeling as a second mechanism by which HDAC inhibitors improve ventricular filling. Our data reveal the existence of pathophysiologically relevant covert or hidden cardiac fibrosis that is below the limit of detection of histochemical stains such as picrosirius red, highlighting the need to evaluate fibrosis of the heart using diverse methodologies.
Asunto(s)
Matriz Extracelular/fisiología , Soplos Cardíacos/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Remodelación Ventricular/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , RatonesRESUMEN
Given the clinical effect of progeria syndrome, understanding the cell mechanical behavior of this pathology could benefit the patient's treatment. Progeria patients show a point mutation in the lamin A/C gene (LMNA), which could change the cell's biomechanical properties. This paper reports a mechano-dynamic analysis of a progeria mutation (c.1824 C > T, p.Gly608Gly) in neonatal rat ventricular myocytes (NRVMs) using cell indentation by atomic force microscopy to measure alterations in beating force, frequency, and contractile amplitude of selected cells within cell clusters. Furthermore, we examined the beating rate variability using a time-domain method that produces a Poincaré plot because beat-to-beat changes can shed light on the causes of arrhythmias. Our data have been further related to our cell phenotype findings, using immunofluorescence and calcium transient analysis, showing that mutant NRVMs display changes in both beating force and frequency. These changes were associated with a decreased gap junction localization (Connexin 43) in the mutant NRVMs even in the presence of a stable cytoskeletal structure (microtubules and actin filaments) when compared with controls (wild type and non-treated cells). These data emphasize the kindred between nucleoskeleton (LMNA), cytoskeleton, and the sarcolemmal structures in NRVM with the progeria Gly608Gly mutation, prompting future mechanistic and therapeutic investigations.
Asunto(s)
Progeria , Ratas , Animales , Progeria/genética , Progeria/metabolismo , Progeria/patología , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Microscopía de Fuerza Atómica , Miocitos Cardíacos , Fenómenos Biomecánicos , Fibroblastos/metabolismo , MutaciónRESUMEN
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disorder characterized by progressive replacement of cardiomyocytes by fibrofatty tissue, ventricular dilatation, cardiac dysfunction, arrhythmias, and sudden cardiac death. Interest in molecular biomechanics for these disorders is constantly growing. Atomic force microscopy (AFM) is a well-established technic to study the mechanobiology of biological samples under physiological and pathological conditions at the cellular scale. However, a review which described all the different data that can be obtained using the AFM (cell elasticity, adhesion behavior, viscoelasticity, beating force, and frequency) is still missing. In this review, we will discuss several techniques that highlight the potential of AFM to be used as a tool for assessing the biomechanics involved in ACM. Indeed, analysis of genetically mutated cells with AFM reveal abnormalities of the cytoskeleton, cell membrane structures, and defects of contractility. The higher the Young's modulus, the stiffer the cell, and it is well known that abnormal tissue stiffness is symptomatic of a range of diseases. The cell beating force and frequency provide information during the depolarization and repolarization phases, complementary to cell electrophysiology (calcium imaging, MEA, patch clamp). In addition, original data is also presented to emphasize the unique potential of AFM as a tool to assess fibrosis in cardiac tissue.
Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Arritmias Cardíacas/metabolismo , Cardiomiopatías/metabolismo , Módulo de Elasticidad/fisiología , Humanos , Microscopía de Fuerza Atómica/métodos , Miocitos Cardíacos/metabolismoRESUMEN
Clinical effects induced by arrhythmogenic cardiomyopathy (ACM) originate from a large spectrum of genetic variations, including the missense mutation of the lamin A/C gene (LMNA), LMNA D192G. The aim of our study was to investigate the biophysical and biomechanical impact of the LMNA D192G mutation on neonatal rat ventricular fibroblasts (NRVF). The main findings in mutated NRVFs were: (i) cytoskeleton disorganization (actin and intermediate filaments); (ii) decreased elasticity of NRVFs; (iii) altered cell-cell adhesion properties, that highlighted a strong effect on cellular communication, in particular on tunneling nanotubes (TNTs). In mutant-expressing fibroblasts, these nanotubes were weakened with altered mechanical properties as shown by atomic force microscopy (AFM) and optical tweezers. These outcomes complement prior investigations on LMNA mutant cardiomyocytes and suggest that the LMNA D192G mutation impacts the biomechanical properties of both cardiomyocytes and cardiac fibroblasts. These observations could explain how this mutation influences cardiac biomechanical pathology and the severity of ACM in LMNA-cardiomyopathy.
Asunto(s)
Adhesión Celular , Lamina Tipo A/metabolismo , Miofibroblastos/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células Cultivadas , Lamina Tipo A/genética , Microscopía de Fuerza Atómica , Mutación Missense , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Miofibroblastos/fisiología , Nanotubos/química , Pinzas Ópticas , Ratas , Ratas Sprague-DawleyRESUMEN
Cardiovascular diseases (CVDs) are the number one cause of death globally, therefore interest in studying aetiology, hallmarks, progress and therapies for these disorders is constantly growing. Over the last decades, the introduction and development of atomic force microscopy (AFM) technique allowed the study of biological samples at the micro- and nanoscopic level, hence revealing noteworthy details and paving the way for investigations on physiological and pathological conditions at cellular scale. The present work is aimed to collect and review the literature on cardiomyocytes (CMs) studied by AFM, in order to emphasise the numerous potentialities of this approach and provide a platform for researchers in the field of cardiovascular diseases. Original data are also presented to highlight the application of AFM to characterise the viscoelastic properties of CMs.
Asunto(s)
Microscopía de Fuerza Atómica , Miocitos Cardíacos/citología , Miocitos Cardíacos/ultraestructura , Animales , HumanosRESUMEN
End stage heart failure is a major cause of death in the US. At present, organ transplant and left-ventricular assist devices remain the only viable treatments for these patients. Cardiac tissue engineering presents the possibility of a new option. Nanomaterials such as gold nanorods (AuNRs) and carbon nanotubes (CNTs) present unique properties that are beneficial for cardiac tissue engineering approaches. In particular, these nanomaterials can modulate electrical conductivity, hardness, and roughness of bulk materials to improve tissue functionality. Moreover, they can deliver bioactive cargo to affect cell phenotypes. This review covers recent advances in the use of nanomaterials for cardiac tissue engineering.
Asunto(s)
Corazón/fisiología , Nanoestructuras/química , Nanotecnología/métodos , Ingeniería de Tejidos/métodos , Animales , Animales Recién Nacidos , Materiales Biocompatibles , Conductividad Eléctrica , Compuestos Férricos/química , Oro/química , Humanos , Nanopartículas del Metal/química , Ratones , MicroARNs/metabolismo , Miocitos Cardíacos/citología , Nanotubos de Carbono/química , Fenotipo , Polímeros/química , Ratas , Regeneración , Andamios del TejidoRESUMEN
Heart failure is a morbid disorder characterized by progressive cardiomyocyte (CM) dysfunction and death. Interest in cell-based therapies is growing, but sustainability of injected CMs remains a challenge. To mitigate this, we developed an injectable biomimetic Reverse Thermal Gel (RTG) specifically engineered to support long-term CM survival. This RTG biopolymer provided a solution-based delivery vehicle of CMs, which transitioned to a gel-based matrix shortly after reaching body temperature. In this study we tested the suitability of this biopolymer to sustain CM viability. The RTG was biomolecule-functionalized with poly-l-lysine or laminin. Neonatal rat ventricular myocytes (NRVM) and adult rat ventricular myocytes (ARVM) were cultured in plain-RTG and biomolecule-functionalized-RTG both under 3-dimensional (3D) conditions. Traditional 2D biomolecule-coated dishes were used as controls. We found that the RTG-lysine stimulated NRVM to spread and form heart-like functional syncytia. Regarding cell contraction, in both RTG and RTG-lysine, beating cells were recorded after 21 days. Additionally, more than 50% (p value < 0.05; n = 5) viable ARVMs, characterized by a well-defined cardiac phenotype represented by sarcomeric cross-striations, were found in the RTG-laminin after 8 days. These results exhibit the tremendous potential of a minimally invasive CM transplantation through our designed RTG-cell therapy platform.
Asunto(s)
Biomimética/métodos , Células Madre Embrionarias/citología , Laminina/química , Lisina/química , Miocitos Cardíacos/citología , Polímeros/química , Ingeniería de Tejidos/métodos , Animales , Animales Recién Nacidos , Células Cultivadas , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best prevention, 50% of lung cancer diagnoses occur in people who have quit smoking. Research into treatment options for high-risk patients is constrained to rodent models, which are time-consuming, expensive, and require large cohorts. Embedding precision-cut lung slices (PCLS) within an engineered hydrogel and exposing this tissue to vinyl carbamate, a carcinogen from cigarette smoke, creates an in vitro model of lung cancer premalignancy. Hydrogel formulations are selected to promote early lung cancer cellular phenotypes and extend PCLS viability to six weeks. Hydrogel-embedded PCLS are exposed to vinyl carbamate, which induces adenocarcinoma in mice. Analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content after six weeks reveals that vinyl carbamate induces premalignant lesions with a mixed adenoma/squamous phenotype. Putative chemoprevention agents diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue are validated with hydrogel-embedded human PCLS and results show increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the foundation for more sophisticated ex vivo models that enable the study of carcinogenesis and chemoprevention strategies.
Asunto(s)
Neoplasias Pulmonares , Lesiones Precancerosas , Humanos , Ratones , Animales , Hidrogeles , Neoplasias Pulmonares/patología , Pulmón/patología , UretanoRESUMEN
The heart integrates diverse cell lineages into a functional unit, including the pericardium, a mesothelial sac that supports heart movement, homeostasis, and immune responses. However, despite its critical roles, the developmental origins of the pericardium remain uncertain due to disparate models. Here, using live imaging, lineage tracking, and single-cell transcriptomics in zebrafish, we find the pericardium forms within the lateral plate mesoderm from dedicated anterior mesothelial progenitors and distinct from the classic heart field. Imaging of transgenic reporters in zebrafish documents lateral plate mesoderm cells that emerge lateral of the classic heart field and among a continuous mesothelial progenitor field. Single-cell transcriptomics and trajectories of hand2-expressing lateral plate mesoderm reveal distinct populations of mesothelial and cardiac precursors, including pericardial precursors that are distinct from the cardiomyocyte lineage. The mesothelial gene expression signature is conserved in mammals and carries over to post-natal development. Light sheet-based live-imaging and machine learning-supported cell tracking documents that during heart tube formation, pericardial precursors that reside at the anterior edge of the heart field migrate anteriorly and medially before fusing, enclosing the embryonic heart to form a single pericardial cavity. Pericardium formation proceeds even upon genetic disruption of heart tube formation, uncoupling the two structures. Canonical Wnt/ß-catenin signaling modulates pericardial cell number, resulting in a stretched pericardial epithelium with reduced cell number upon canonical Wnt inhibition. We connect the pathological expression of secreted Wnt antagonists of the SFRP family found in pediatric dilated cardiomyopathy to increased pericardial stiffness: sFRP1 in the presence of increased catecholamines causes cardiomyocyte stiffness in neonatal rats as measured by atomic force microscopy. Altogether, our data integrate pericardium formation as an independent process into heart morphogenesis and connect disrupted pericardial tissue properties such as pericardial stiffness to pediatric cardiomyopathies.
RESUMEN
Aortic valve stenosis (AVS) is a progressive disease wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males. We hypothesized the lysine demethylase UTY (ubiquitously transcribed tetratricopeptide repeat containing, Y-linked) decreases methylation uniquely in male VICs responding to nanoscale extracellular matrix cues to promote an osteoblast-like cell phenotype. Here, we describe a hydrogel biomaterial cell culture platform to interrogate how nanoscale cues modulate sex-specific methylation states in VICs activating to myofibroblasts and osteoblast-like cells. We found UTY modulates the osteoblast-like cell phenotype in response to nanoscale cues uniquely in male VICs. Overall, we reveal a novel role of UTY in the regulation of calcification processes in males during AVS progression.
RESUMEN
Cardiac fibrosis refers to the abnormal accumulation of extracellular matrix within the cardiac muscle, leading to increased stiffness and impaired heart function. From a rheological standpoint, knowledge about myocardial behavior is still lacking, partially due to a lack of appropriate techniques to investigate the rheology of in vitro cardiac tissue models. 3D multicellular cardiac spheroids are powerful and versatile platforms for modeling healthy and fibrotic cardiac tissue in vitro and studying how their mechanical properties are modulated. In this study, cardiac spheroids were created by co-culturing neonatal rat ventricular cardiomyocytes and fibroblasts in definite ratios using the hanging-drop method. The rheological characterization of such models was performed by Atomic Force Microscopy-based stress-relaxation measurements on the whole spheroid. After strain application, a viscoelastic bi-exponential relaxation was observed, characterized by a fast relaxation time (τ1) followed by a slower one (τ2). In particular, spheroids with higher fibroblasts density showed reduction for both relaxation times comparing to control, with a more pronounced decrement of τ1 with respect to τ2. Such response was found compatible with the increased production of extracellular matrix within these spheroids, which recapitulates the main feature of the fibrosis pathophysiology. These results demonstrate how the rheological characteristics of cardiac tissue vary as a function of cellular composition and extracellular matrix, confirming the suitability of such system as an in vitro preclinical model of cardiac fibrosis.
Asunto(s)
Fibrosis , Miocitos Cardíacos , Reología , Esferoides Celulares , Animales , Esferoides Celulares/citología , Esferoides Celulares/patología , Ratas , Miocitos Cardíacos/citología , Fibroblastos/citología , Miocardio/citología , Miocardio/patología , Miocardio/metabolismo , Ratas Wistar , Modelos BiológicosRESUMEN
Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature, characterized by elevated pulmonary blood pressure, remodeling of the pulmonary arteries, and ultimately right ventricular failure. Therapeutic interventions for PAH are limited in part by the lack ofin vitroscreening platforms that accurately reproduce dynamic arterial wall mechanical properties. Here we present a 3D-bioprinted model of the pulmonary arterial adventitia comprised of a phototunable poly(ethylene glycol) alpha methacrylate (PEG-αMA)-based hydrogel and primary human pulmonary artery adventitia fibroblasts (HPAAFs). This unique biomaterial emulates PAH pathogenesisin vitrothrough a two-step polymerization reaction. First, PEG-αMA macromer was crosslinked off-stoichiometry by 3D bioprinting an acidic bioink solution into a basic gelatin support bath initiating a base-catalyzed thiol-ene reaction with synthetic and biodegradable crosslinkers. Then, matrix stiffening was induced by photoinitiated homopolymerization of unreacted αMA end groups. A design of experiments approach produced a hydrogel platform that exhibited an initial elastic modulus (E) within the range of healthy pulmonary arterial tissue (E= 4.7 ± 0.09 kPa) that was stiffened to the pathologic range of hypertensive tissue (E= 12.8 ± 0.47 kPa) and supported cellular proliferation over time. A higher percentage of HPAAFs cultured in stiffened hydrogels expressed the fibrotic marker alpha-smooth muscle actin than cells in soft hydrogels (88 ± 2% versus 65 ± 4%). Likewise, a greater percentage of HPAAFs were positive for the proliferation marker 5-ethynyl-2'-deoxyuridine (EdU) in stiffened models (66 ± 6%) compared to soft (39 ± 6%). These results demonstrate that 3D-bioprinted, phototunable models of pulmonary artery adventitia are a tool that enable investigation of fibrotic pathogenesisin vitro.
Asunto(s)
Bioimpresión , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Hidrogeles/farmacología , Adventicia , FibroblastosRESUMEN
Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and main indication for heart transplantation in children. Therapies specific to pediatric DCM remain limited due to lack of a disease model. Our previous study showed that treatment of neonatal rat ventricular myocytes (NRVMs) with serum from nonfailing or DCM pediatric patients activates the fetal gene program (FGP). Here we show that serum treatment with proteinase K prevents activation of the FGP, whereas RNase treatment exacerbates it, suggesting that circulating proteins, but not circulating miRNAs, promote these pathological changes. Evaluation of the protein secretome showed that midkine (MDK) is upregulated in DCM serum, and NRVM treatment with MDK activates the FGP. Changes in gene expression in serum-treated NRVMs, evaluated by next-generation RNA-Seq, indicated extracellular matrix remodeling and focal adhesion pathways were upregulated in pediatric DCM serum and in DCM serum-treated NRVMs, suggesting alterations in cellular stiffness. Cellular stiffness was evaluated by Atomic Force Microscopy, which showed an increase in stiffness in DCM serum-treated NRVMs. Of the proteins increased in DCM sera, secreted frizzled-related protein 1 (sFRP1) was a potential candidate for the increase in cellular stiffness, and sFRP1 treatment of NRVMs recapitulated the increase in cellular stiffness observed in response to DCM serum treatment. Our results show that serum circulating proteins promoted pathological changes in gene expression and cellular stiffness, and circulating miRNAs were protective against pathological changes.
Asunto(s)
Cardiomiopatía Dilatada/genética , Matriz Extracelular/efectos de los fármacos , Adhesiones Focales/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Adolescente , Animales , Animales Recién Nacidos , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Niño , Preescolar , Endopeptidasa K/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Masculino , Microscopía de Fuerza Atómica , Midkina/metabolismo , Midkina/farmacología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , RNA-Seq , Ratas , Ribonucleasas/farmacología , Secretoma , Remodelación Ventricular/genéticaRESUMEN
Stromal fibrosis activates prosurvival and proepithelial-to-mesenchymal transition (EMT) pathways in pancreatic ductal adenocarcinoma (PDAC). In patient tumors treated with neoadjuvant stereotactic body radiation therapy (SBRT), we found upregulation of fibrosis, extracellular matrix (ECM), and EMT gene signatures, which can drive therapeutic resistance and tumor invasion. Molecular, functional, and translational analysis identified two cell-surface proteins, a disintegrin and metalloprotease 10 (ADAM10) and ephrinB2, as drivers of fibrosis and tumor progression after radiation therapy (RT). RT resulted in increased ADAM10 expression in tumor cells, leading to cleavage of ephrinB2, which was also detected in plasma. Pharmacologic or genetic targeting of ADAM10 decreased RT-induced fibrosis and tissue tension, tumor cell migration, and invasion, sensitizing orthotopic tumors to radiation killing and prolonging mouse survival. Inhibition of ADAM10 and genetic ablation of ephrinB2 in fibroblasts reduced the metastatic potential of tumor cells after RT. Stimulation of tumor cells with ephrinB2 FC protein reversed the reduction in tumor cell invasion with ADAM10 ablation. These findings represent a model of PDAC adaptation that explains resistance and metastasis after RT and identifies a targetable pathway to enhance RT efficacy. SIGNIFICANCE: Targeting a previously unidentified adaptive resistance mechanism to radiation therapy in PDAC tumors in combination with radiation therapy could increase survival of the 40% of PDAC patients with locally advanced disease.See related commentary by Garcia Garcia et al., p. 3158 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3255/F1.large.jpg.
Asunto(s)
Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Carcinoma Ductal Pancreático/radioterapia , Transición Epitelial-Mesenquimal , Fibrosis/patología , Rayos gamma/efectos adversos , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas/radioterapia , Traumatismos por Radiación/patología , Proteína ADAM10/antagonistas & inhibidores , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Antifibróticos/uso terapéutico , Apoptosis , Carcinoma Ductal Pancreático/patología , Movimiento Celular , Proliferación Celular , Efrina-B2/sangre , Femenino , Fibrosis/tratamiento farmacológico , Fibrosis/etiología , Fibrosis/metabolismo , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/patología , Pronóstico , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/etiología , Traumatismos por Radiación/metabolismo , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Laminopathies are genetic diseases caused by mutations in the nuclear lamina. OBJECTIVE: Given the clinical impact of laminopathies, understanding mechanical properties of cells bearing lamin mutations will lead to advancement in the treatment of heart failure. METHODS: Atomic force microscopy (AFM) was used to analyze the viscoelastic behavior of neonatal rat ventricular myocyte cells expressing three human lamin A/C gene (LMNA) mutations. RESULTS: Cell storage modulus was characterized, by two plateaus, one in the low frequency range, a second one at higher frequencies. The loss modulus instead showed a "bell" shape with a relaxation toward fluid properties at lower frequencies. Mutations shifted the relaxation to higher frequencies, rendering the networks more solid-like. This increase of stiffness with mutations (solid like behavior) was at frequencies around 1 Hz, close to the human heart rate. CONCLUSIONS: These features resulted from a combination of the properties of cytoskeleton filaments and their temporary cross-linker. Our results substantiate that cross-linked filaments contribute, for the most part, to the mechanical strength of the cytoskeleton of the cell studied and the relaxation time is determined by the dissociation dynamics of the cross-linking proteins. The severity of biomechanical defects due to these LMNA mutations correlated with the severity of the clinical phenotype.
Asunto(s)
Lamina Tipo A , Miocitos Cardíacos , Animales , Citoesqueleto , Lamina Tipo A/genética , Mutación , Miocitos Cardíacos/fisiología , Lámina Nuclear , RatasRESUMEN
Given the clinical effect of laminopathies, understanding lamin mechanical properties will benefit the treatment of heart failure. Here we report a mechano-dynamic study of LMNA mutations in neonatal rat ventricular myocytes (NRVM) using single cell spectroscopy with Atomic Force Microscopy (AFM) and measured changes in beating force, frequency and contractile amplitude of selected mutant-expressing cells within cell clusters. Furthermore, since beat-to-beat variations can provide clues on the origin of arrhythmias, we analyzed the beating rate variability using a time-domain method which provides a Poincaré plot. Data were further correlated to cell phenotypes. Immunofluorescence and calcium imaging analysis showed that mutant lamin changed NRVMs beating force and frequency. Additionally, we noted an altered microtubule network organization with shorter filament length, and defective hemichannel membrane localization (Connexin 43). These data highlight the interconnection between nucleoskeleton, cytoskeleton and sarcolemmal structures, and the transcellular consequences of mutant lamin protein in the pathogenesis of the cardiac laminopathies.
RESUMEN
Utilizing polymers in cardiac tissue engineering holds promise for restoring function to the heart following myocardial infarction, which is associated with grave morbidity and mortality. To properly mimic native cardiac tissue, materials must not only support cardiac cell growth but also have inherent conductive properties. Here, we present an injectable reverse thermal gel (RTG)-based cardiac cell scaffold system that is both biocompatible and conductive. Following the synthesis of a highly functionalizable, biomimetic RTG backbone, gold nanoparticles (AuNPs) were chemically conjugated to the backbone to enhance the system's conductivity. The resulting RTG-AuNP hydrogel supported targeted survival of neonatal rat ventricular myocytes (NRVMs) for up to 21 days when cocultured with cardiac fibroblasts, leading to an increase in connexin 43 (Cx43) relative to control cultures (NRVMs cultured on traditional gelatin-coated dishes and RTG hydrogel without AuNPs). This biomimetic and conductive RTG-AuNP hydrogel holds promise for future cardiac tissue engineering applications.