Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Immunol ; : e2451080, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39072720

RESUMEN

Although the functions of tyrosine phosphatases in T-cell biology have been extensively studied, our knowledge on the contribution of serine/threonine phosphatases in T cells remains poor. Protein phosphatase 2A (PP2A) is one of the most abundantly expressed serine/threonine phosphatases. It is important in thymocyte development and CD4+ T-cell differentiation. Utilizing a genetic model in which its catalytic subunit alpha isoform (PP2A Cα) is deleted in T cells, we investigated its contribution to CD8+ T-cell homeostasis and effector functions. Our results demonstrate that T-cell intrinsic PP2A Cα is critically required for CD8+ T-cell homeostasis in secondary lymphoid organs and intestinal mucosal site. Importantly, PP2A Cα-deficient CD8+ T cells exhibit reduced proliferation and survival. CD8+ T-cell antibacterial response is strictly dependent on PP2A Cα. Expression of Bcl2 transgene rescues CD8+ T-cell homeostasis in spleens, but not in intestinal mucosal site, nor does it restore defective antibacterial responses. Finally, proteomics and phosphoproteomics analyses reveal potential targets dependent on PP2A Cα, including mTORC1 and AKT. Thus, PP2A Cα is a key modulator of CD8+ T-cell homeostasis and effector functions.

2.
J Immunol ; 205(5): 1228-1238, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32737149

RESUMEN

Theiler's murine encephalomyelitis virus (TMEV) infection of the CNS is cleared in C57BL/6 mice by a CD8 T cell response restricted by the MHC class I molecule H-2Db The identity and function of the APC(s) involved in the priming of this T cell response is (are) poorly defined. To address this gap in knowledge, we developed an H-2Db LoxP-transgenic mouse system using otherwise MHC class I-deficient C57BL/6 mice, thereby conditionally ablating MHC class I-restricted Ag presentation in targeted APC subpopulations. We observed that CD11c+ APCs are critical for early priming of CD8 T cells against the immunodominant TMEV peptide VP2121-130 Loss of H-2Db on CD11c+ APCs mitigates the CD8 T cell response, preventing early viral clearance and immunopathology associated with CD8 T cell activity in the CNS. In contrast, animals with H-2Db-deficient LysM+ APCs retained early priming of Db:VP2121-130 epitope-specific CD8 T cells, although a modest reduction in immune cell entry into the CNS was observed. This work establishes a model enabling the critical dissection of H-2Db-restricted Ag presentation to CD8 T cells, revealing cell-specific and temporal features involved in the generation of CD8 T cell responses. Employing this novel system, we establish CD11c+ cells as pivotal to the establishment of acute antiviral CD8 T cell responses against the TMEV immunodominant epitope VP2121-130, with functional implications both for T cell-mediated viral control and immunopathology.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Cardiovirus/inmunología , Genes MHC Clase I/inmunología , Antígenos H-2/inmunología , Theilovirus/inmunología , Animales , Presentación de Antígeno , Proteínas de la Cápside/inmunología , Epítopos de Linfocito T/inmunología , Epítopos Inmunodominantes/inmunología , Cinética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Proc Natl Acad Sci U S A ; 116(8): 3136-3145, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30728302

RESUMEN

Successful efforts to activate T cells capable of recognizing weak cancer-associated self-antigens have employed altered peptide antigens to activate T cell responses capable of cross-reacting on native tumor-associated self. A limitation of this approach is the requirement for detailed knowledge about the altered self-peptide ligands used in these vaccines. In the current study we considered allorecognition as an approach for activating CTL capable of recognizing weak or self-antigens in the context of self-MHC. Nonself antigen-presenting molecules typically contain polymorphisms that influence interactions with the bound peptide and TCR interface. Recognition of these nonself structures results in peptide-dependent alloimmunity. Alloreactive T cells target their inducing alloantigens as well as third-party alloantigens but generally fail to target self-antigens. Certain residues located on the alpha-1/2 domains of class I antigen-presenting molecules primarily interface with TCR. These residues are more conserved within and across species than are residues that determine peptide antigen binding properties. Class I variants designed with amino acid substitutions at key positions within the conserved helical structures are shown to provide strong activating signals to alloreactive CD8 T cells while avoiding changes in naturally bound peptide ligands. Importantly, CTL activated in this manner can break self-tolerance by reacting to self-peptides presented by native MHC. The ability to activate self-tolerant T cells capable of cross-reacting on self-peptide-MHC in vivo represents an approach for inducing autoimmunity, with possible application in cancer vaccines.


Asunto(s)
Presentación de Antígeno/inmunología , Citotoxicidad Inmunológica , Antígenos de Histocompatibilidad Clase I/inmunología , Linfocitos T Citotóxicos/inmunología , Secuencia de Aminoácidos/genética , Animales , Linfocitos T CD8-positivos/inmunología , Humanos , Tolerancia Inmunológica , Ligandos , Activación de Linfocitos/inmunología , Ratones , Péptidos/genética , Péptidos/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
4.
Blood ; 133(7): 697-709, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30463995

RESUMEN

Chimeric antigen receptor T (CAR-T) cell therapy is a new pillar in cancer therapeutics; however, its application is limited by the associated toxicities. These include cytokine release syndrome (CRS) and neurotoxicity. Although the IL-6R antagonist tocilizumab is approved for treatment of CRS, there is no approved treatment of neurotoxicity associated with CD19-targeted CAR-T (CART19) cell therapy. Recent data suggest that monocytes and macrophages contribute to the development of CRS and neurotoxicity after CAR-T cell therapy. Therefore, we investigated neutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) as a potential strategy to manage CART19 cell-associated toxicities. In this study, we show that GM-CSF neutralization with lenzilumab does not inhibit CART19 cell function in vitro or in vivo. Moreover, CART19 cell proliferation was enhanced and durable control of leukemic disease was maintained better in patient-derived xenografts after GM-CSF neutralization with lenzilumab. In a patient acute lymphoblastic leukemia xenograft model of CRS and neuroinflammation (NI), GM-CSF neutralization resulted in a reduction of myeloid and T cell infiltration in the central nervous system and a significant reduction in NI and prevention of CRS. Finally, we generated GM-CSF-deficient CART19 cells through CRISPR/Cas9 disruption of GM-CSF during CAR-T cell manufacturing. These GM-CSFk/o CAR-T cells maintained normal functions and had enhanced antitumor activity in vivo, as well as improved overall survival, compared with CART19 cells. Together, these studies illuminate a novel approach to abrogate NI and CRS through GM-CSF neutralization, which may potentially enhance CAR-T cell function. Phase 2 studies with lenzilumab in combination with CART19 cell therapy are planned.


Asunto(s)
Citocinas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Enfermedades del Sistema Inmune/terapia , Inflamación/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/uso terapéutico , Receptores Quiméricos de Antígenos/inmunología , Animales , Anticuerpos Neutralizantes/farmacología , Proliferación Celular , Humanos , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Síndrome , Trasplante Heterólogo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Brain ; 143(12): 3629-3652, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33253355

RESUMEN

Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Tolerancia Inmunológica , Mediadores de Inflamación/metabolismo , Animales , Células de la Médula Ósea/inmunología , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Progresión de la Enfermedad , Femenino , Genes MHC Clase II/genética , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/patología , Glioma/inmunología , Glioma/metabolismo , Glioma/patología , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Parabiosis , Convulsiones/inducido químicamente , Bazo/inmunología , Bazo/patología , Theilovirus , Timo/patología
6.
J Immunol ; 200(5): 1917-1928, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29352003

RESUMEN

Human immunity exhibits remarkable heterogeneity among individuals, which engenders variable responses to immune perturbations in human populations. Population studies reveal that, in addition to interindividual heterogeneity, systemic immune signatures display longitudinal stability within individuals, and these signatures may reliably dictate how given individuals respond to immune perturbations. We hypothesize that analyzing relationships among these signatures at the population level may uncover baseline immune phenotypes that correspond with response outcomes to immune stimuli. To test this, we quantified global gene expression in peripheral blood CD4+ cells from healthy individuals at baseline and following CD3/CD28 stimulation at two time points 1 mo apart. Systemic CD4+ cell baseline and poststimulation molecular immune response signatures (MIRS) were defined by identifying genes expressed at levels that were stable between time points within individuals and differential among individuals in each state. Iterative differential gene expression analyses between all possible phenotypic groupings of at least three individuals using the baseline and stimulated MIRS gene sets revealed shared baseline and response phenotypic groupings, indicating the baseline MIRS contained determinants of immune responsiveness. Furthermore, significant numbers of shared phenotype-defining sets of determinants were identified in baseline data across independent healthy cohorts. Combining the cohorts and repeating the analyses resulted in identification of over 6000 baseline immune phenotypic groups, implying that the MIRS concept may be useful in many immune perturbation contexts. These findings demonstrate that patterns in complex gene expression variability can be used to define immune phenotypes and discover determinants of immune responsiveness.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Expresión Génica/genética , Activación de Linfocitos/inmunología , Transcriptoma/genética , Antígenos CD28/inmunología , Complejo CD3/inmunología , Expresión Génica/inmunología , Humanos , Activación de Linfocitos/genética , Fenotipo , Transcriptoma/inmunología
7.
Genomics ; 111(6): 1752-1759, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30529531

RESUMEN

RNA sequencing (RNA-seq) has become the widely preferred choice for surveying the genome-wide transcriptome complexity in many organisms. However, the broad adaptation of this methodology into the clinic still needs further evaluation of potential effect of sample preparation factors on its analytical reliability using patient samples. In this study, we examined the impact of three major sample preparation factors (i.e., cDNA library storage time, the quantity of input RNA, and cryopreservation of cell samples) on sequence biases, gene expression profiles, and enriched biological functions using RNAs isolated from primary B cell and CD4+ cell blood samples of healthy subjects. Our comprehensive comparison results suggested that different cDNA library storage time, quantity of input RNA, and cryopreservation of cell samples did not significantly alter gene transcriptional expression profiles generated by RNA-seq experiments. These findings shed new lights on the potential applications of RNA-seq technique to patient samples in a regular clinical setting.


Asunto(s)
Perfilación de la Expresión Génica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN , Transcriptoma , Humanos
8.
J Virol ; 91(2)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807231

RESUMEN

Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. IMPORTANCE: Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent vectors and vaccines than current RD-Ad vectors.


Asunto(s)
Adenoviridae/genética , Vectores Genéticos/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Replicación Viral , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Línea Celular , Cricetinae , Replicación del ADN , ADN Complementario/genética , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunización , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Ratas , Proteínas Recombinantes de Fusión , Sigmodontinae
9.
J Immunol ; 195(12): 5648-56, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26561552

RESUMEN

Calcium-modulating cyclophilin ligand (CAML) is an endoplasmic reticulum resident protein that is widely expressed. Although it has been demonstrated to participate in the tail-anchored protein insertion pathway, its physiological role in the mature immune system is unknown. In this work, we show that mature, peripheral T cells require CAML for survival specifically following TCR-induced activation. In this study, we examined mature T cells from spleen and lymph nodes of tamoxifen-inducible CAML knockout mice (tCAML(-/-)). Whereas CAML-deficient T cells were able to express the early activation markers CD25 and CD69, and produce IL-2 normally upon stimulation, deficient cells proliferated less and died. Cells did not require CAML for entry into the S phase of the cell cycle, thus implicating its survival function at a relatively late step in the T cell activation sequence. In addition, CAML was required for homeostatic proliferation and for Ag-dependent cell killing in vivo. These results demonstrate that CAML critically supports T cell survival and cell division downstream of T cell activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcio/metabolismo , Ciclofilinas/metabolismo , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo , Inmunidad Adaptativa , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Modificados Genéticamente , Supervivencia Celular , Células Cultivadas , Ligandos , Activación de Linfocitos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología
10.
Am J Respir Crit Care Med ; 192(5): 605-17, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26030344

RESUMEN

RATIONALE: Most immunocompetent patients diagnosed with latent tuberculosis infection (LTBI) will not progress to tuberculosis (TB) reactivation. However, current diagnostic tools cannot reliably distinguish nonprogressing from progressing patients a priori, and thus LTBI therapy must be prescribed with suboptimal patient specificity. We hypothesized that LTBI diagnostics could be improved by generating immunomarker profiles capable of categorizing distinct patient subsets by a combinatorial immunoassay approach. OBJECTIVES: A combinatorial immunoassay analysis was applied to identify potential immunomarker combinations that distinguish among unexposed subjects, untreated patients with LTBI, and treated patients with LTBI and to differentiate risk of reactivation. METHODS: IFN-γ release assay (IGRA) was combined with a flow cytometric assay that detects induction of CD25(+)CD134(+) coexpression on TB antigen-stimulated T cells from peripheral blood. The combinatorial immunoassay analysis was based on receiver operating characteristic curves, technical cut-offs, 95% bivariate normal density ellipse prediction, and statistical analysis. Risk of reactivation was estimated with a prediction formula. MEASUREMENTS AND MAIN RESULTS: Sixty-five out of 150 subjects were included. The combinatorial immunoassay approach identified at least four different T-cell subsets. The representation of these immune phenotypes was more heterogeneous in untreated patients with LTBI than in treated patients with LTBI or unexposed groups. Patients with IGRA(+) CD4(+)CD25(+)CD134(+) T-cell phenotypes had the highest estimated reactivation risk (4.11 ± 2.11%). CONCLUSIONS: These findings suggest that immune phenotypes defined by combinatorial assays may potentially have a role in identifying those at risk of developing TB; this potential role is supported by risk of reactivation modeling. Prospective studies will be needed to test this novel approach.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Inmunocompetencia/inmunología , Ensayos de Liberación de Interferón gamma , Tuberculosis Latente/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Estudios de Cohortes , Femenino , Citometría de Flujo , Humanos , Inmunoensayo , Subunidad alfa del Receptor de Interleucina-2/inmunología , Masculino , Persona de Mediana Edad , Curva ROC , Receptores OX40/inmunología , Medición de Riesgo , Linfocitos T/inmunología , Adulto Joven
11.
Cancer Immunol Immunother ; 64(11): 1437-47, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26245876

RESUMEN

Melanoma patients exhibit changes in immune responsiveness in the local tumor environment, draining lymph nodes, and peripheral blood. Immune-targeting therapies are revolutionizing melanoma patient care increasingly, and studies show that patients derive clinical benefit from these newer agents. Nonetheless, predicting which patients will benefit from these costly therapies remains a challenge. In an effort to capture individual differences in immune responsiveness, we are analyzing patterns of gene expression in human peripheral blood cells using RNAseq. Focusing on CD4+ peripheral blood cells, we describe multiple categories of immune regulating genes, which are expressed in highly ordered patterns shared by cohorts of healthy subjects and stage IV melanoma patients. Despite displaying conservation in overall transcriptome structure, CD4+ peripheral blood cells from melanoma patients differ quantitatively from healthy subjects in the expression of more than 2000 genes. Moreover, 1300 differentially expressed genes are found in transcript response patterns following activation of CD4+ cells ex vivo, suggesting that widespread functional discrepancies differentiate the immune systems of healthy subjects and melanoma patients. While our analysis reveals that the transcriptome architecture characteristic of healthy subjects is maintained in cancer patients, the genes expressed differentially among individuals and across cohorts provide opportunities for understanding variable immune states as well as response potentials, thus establishing a foundation for predicting individual responses to stimuli such as immunotherapeutic agents.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Perfilación de la Expresión Génica , Melanoma/inmunología , Adulto , Antígenos CD28/fisiología , Femenino , Humanos , Masculino , Melanoma/patología , Persona de Mediana Edad , Estadificación de Neoplasias , Receptores de Antígenos de Linfocitos T/fisiología , Análisis de Secuencia de ARN , Transducción de Señal
12.
PLoS Pathog ; 8(2): e1002541, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22383876

RESUMEN

Structural diversity in the peptide binding sites of the redundant classical MHC antigen presenting molecules is strongly selected in humans and mice. Although the encoded antigen presenting molecules overlap in antigen presenting function, differences in polymorphism at the MHC I A, B and C loci in humans and higher primates indicate these loci are not functionally equivalent. The structural basis of these differences is not known. We hypothesize that classical class I loci differ in their ability to direct effective immunity against intracellular pathogens. Using a picornavirus infection model and chimeric H-2 transgenes, we examined locus specific functional determinants distinguishing the ability of class I sister genes to direct effective anti viral immunity. Whereas, parental FVB and transgenic FVB mice expressing the H-2K(b) gene are highly susceptible to persisting Theiler's virus infection within the CNS and subsequent demyelination, mice expressing the D(b) transgene clear the virus and are protected from demyelination. Remarkably, animals expressing a chimeric transgene, comprised primarily of K(b) but encoding the peptide binding domain of D(b), develop a robust anti viral CTL response yet fail to clear virus and develop significant demyelination. Differences in expression of the chimeric K(b)α1α2D(b) gene (low) and D(b) (high) in the CNS of infected mice mirror expression levels of their endogenous H-2(q) counterparts in FVB mice. These findings demonstrate that locus specific elements other than those specifying peptide binding and T cell receptor interaction can determine ability to clear virus infection. This finding provides a basis for understanding locus-specific differences in MHC polymorphism, characterized best in human populations.


Asunto(s)
Genes MHC Clase I/fisiología , Sitios Genéticos/fisiología , Inmunidad Innata/genética , Virus/inmunología , Animales , Eficiencia , Antígenos H-2/química , Antígenos H-2/genética , Antígenos H-2/metabolismo , Células HEK293 , Antígeno de Histocompatibilidad H-2D , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Transgénicos , Modelos Moleculares , Virosis/genética , Virosis/inmunología
13.
Mol Ther ; 21(5): 1087-95, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23568262

RESUMEN

Picornaviruses have been developed as potential therapies for gene delivery and vaccination. One drawback to their use is the potential for recombination and viral persistence. Therefore, the engineering strategies used must take into account the possibility for virus escape. We have developed Theiler's murine encephalomyelitis virus (TMEV) as a potential vaccine vector for use in immunotherapy. This study shows that insertion of a vaccine epitope at a unique site within the TMEV leader protein can dramatically increase the type I interferon (IFN) response to infection and promote rapid viral clearance. This live virus vaccine maintains its ability to drive antigen-specific CD8(+) T-cell responses to a model antigen as well as to the weakly immunogenic tumor antigen Her2/neu. Furthermore, the epitope integration site does not affect the efficacy of this vaccine as cancer immunotherapy for treating models of melanoma and breast cancer as demonstrated by delayed tumor outgrowth and increased survival in animals implanted with these tumors. These findings show that an attenuated virus retaining limited ability to replicate nonetheless can effectively mobilize CD8(+) cellular immunity and will be important for the design of picornavirus vectors used as immunotherapy in clinical settings.


Asunto(s)
Antígenos/inmunología , Vacunas contra el Cáncer/inmunología , Epítopos/inmunología , Neoplasias/inmunología , Theilovirus/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/genética , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/mortalidad , Infecciones por Cardiovirus/virología , Línea Celular Tumoral , Femenino , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Humanos , Inmunoterapia , Interferón Tipo I/inmunología , Ratones , Datos de Secuencia Molecular , Mutagénesis Insercional , Neoplasias/patología , Neoplasias/terapia , Receptor ErbB-2/inmunología , Theilovirus/genética , Carga Tumoral/efectos de los fármacos , Vacunas Atenuadas , Proteínas Virales/química , Proteínas Virales/inmunología
14.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370780

RESUMEN

While the functions of tyrosine phosphatases in T cell biology have been extensively studied, our knowledge on the contribution of serine/threonine phosphatases in T cells remains poor. Protein phosphatase 2A (PP2A) is one of the most abundantly expressed serine/threonine phosphatases. It is important in thymocyte development and CD4+ T cell differentiation. Utilizing a genetic model in which its catalytic subunit alpha isoform (PP2A Cα) is deleted in T cells, we investigated its contribution to CD8+ T cell homeostasis and effector functions. Our results demonstrate that T cell intrinsic PP2A Cα is critically required for CD8+ T cell homeostasis in secondary lymphoid organs and intestinal mucosal site. Importantly, PP2A Cα deficient CD8+ T cells exhibit reduced proliferation and survival. CD8+ T cell anti-bacterial response is strictly dependent on PP2A Cα. Expression of Bcl2 transgene rescues CD8+ T cell homeostasis in spleens, but not in intestinal mucosal site, nor does it restore the defective anti-bacterial responses. Finally, proteomics and phosphoproteomics analyses reveal potential targets dependent on PP2A Cα, including mTORC1 and AKT. Thus, PP2A Cα is a key modulator of CD8+ T cell homeostasis and effector functions.

15.
J Immunol ; 187(11): 5795-804, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22048767

RESUMEN

IL-33 promotes type 2 immune responses, both protective and pathogenic. Recently, targets of IL-33, including several newly discovered type 2 innate cells, have been characterized in the periphery. In this study, we report that bone marrow cells from wild-type C57BL/6 mice responded with IL-5 and IL-13 production when cultured with IL-33. IL-33 cultures of bone marrow cells from Rag1 KO and Kit(W-sh/W-sh) mice also responded similarly; hence, eliminating the possible contributions of T, B, and mast cells. Rather, intracellular staining revealed that the IL-5- and IL-13-positive cells display a marker profile consistent with the Lineage(-)Sca-1(+)c-Kit(-)CD25(+) (LSK(-)CD25(+)) cells, a bone marrow cell population of previously unknown function. Freshly isolated LSK(-)CD25(+) cells uniformly express ST2, the IL-33 receptor. In addition, culture of sorted LSK(-)CD25(+) cells showed that they indeed produce IL-5 and IL-13 when cultured with IL-33 plus IL-2 and IL-33 plus IL-7. Furthermore, i.p. injections of IL-33 or IL-25 into mice induced LSK(-)CD25(+) cells to expand, in both size and frequency, and to upregulate ST2 and α(4)ß(7) integrin, a mucosal homing marker. Thus, we identify the enigmatic bone marrow LSK(-)CD25(+) cells as IL-33 responsive, both in vitro and in vivo, with attributes similar to other type 2 innate cells described in peripheral tissues.


Asunto(s)
Células de la Médula Ósea/citología , Linaje de la Célula/inmunología , Inmunidad Innata/inmunología , Interleucinas/inmunología , Animales , Antígenos Ly/inmunología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Separación Celular , Citocinas/biosíntesis , Citometría de Flujo , Subunidad alfa del Receptor de Interleucina-2/inmunología , Interleucina-33 , Interleucinas/metabolismo , Masculino , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-kit/inmunología
16.
Proc Natl Acad Sci U S A ; 107(2): 792-7, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20080754

RESUMEN

The potential for endogenous remyelination and axonal protection can be an important factor in determining disease outcome in demyelinating diseases like multiple sclerosis. In many multiple sclerosis (MS) patients CNS repair fails or is incomplete whereas in others the disease is accompanied by extensive repair of demyelinated lesions. We have described significant differences in the ability of two strains of mice to repair CNS damage following Theiler's virus-induced demyelination: FVB/NJ (FVB) mice repair damaged myelin spontaneously and completely, whereas B10.D1-H2(q)/SgJ (B10.Q) mice are deficient in the repair process. A QTL analysis was performed to identify genetic loci that differentially regulate CNS repair following chronic demyelination in these strains and two QTL were detected: one on chromosome 3 with a LOD score of 9.3 and a second on chromosome 9 with a LOD score of 14.0. The mouse genes for epidermal growth factor (EGF) and Tyk2 are encoded within the QTL on chromosomes 3 and 9, respectively. Sequence polymorphisms between the FVB and B10.Q strains at both the EGF and Tyk2 loci define functional variations consistent with roles for these genes in regulating myelin repair. EGF is a key regulator of cell growth and development and we show a sevenfold increase in EGF expression in FVB compared to B10.Q mice. Tyk2 is a Janus kinase that plays a central role in controlling the T(H)1 immune response and we show that attenuation of Tyk2 function correlates with enhanced CNS repair.


Asunto(s)
Enfermedades Desmielinizantes/genética , Factor de Crecimiento Epidérmico/genética , Variación Genética , Ratones Endogámicos/genética , Vaina de Mielina/genética , TYK2 Quinasa/genética , Alelos , Animales , Cruzamientos Genéticos , Daño del ADN , Reparación del ADN , Ratones , Sitios de Carácter Cuantitativo/genética , Receptores de Eritropoyetina/genética
17.
J Autoimmun ; 38(4): 344-53, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22459490

RESUMEN

Previously we showed that transgenic mice expressing human HLA-DR3 gene are susceptible to PLP(91-110) induced experimental autoimmune encephalomyelitis (EAE) and can serve as an animal model of multiple sclerosis (MS). HLA-DR3 mice with EAE showed increased number of CD8 T cells indicating their important role in disease pathogenesis. The role of CD8 T cells in MS, an inflammatory demyelinating disease of CNS, has been enigmatic as it has been assigned both regulatory and pathogenic roles. Therefore, to evaluate the role of CD8 T cells, we generated CD8 deficient HLA-DR3 transgenic mice (DR3.CD8(-/-)). Immunization with PLP(91-110) led to more severe EAE in DR3.CD8(-/-) mice compared to HLA-DR3 mice indicating a regulatory role for CD8 T cells. Interestingly, DR3.CD8(-/-) mice with EAE showed decreased CNS pathology compared to DR3 mice thus suggesting a pathogenic role for CD8 T cells. We show that these two subsets of CD8 T cells can be differentiated based on the surface expression of CD122 (IL-2 Rß chain). CD8 T cells expressing CD122 (CD8+CD122+) play a regulatory role while CD8+CD122- T cells act as a pathogenic subset. CD122 expressing CD8 T cells are the regulatory subset of CD8 T cells and regulate the encephalitogenic CD4 T cells through direct modulation of antigen presenting cells and/or through the release of immunoregulatory cytokines such as IL-10, IFNγ and TGFß. We also showed that adoptive transfer of CD8CD122- T cells caused increased spinal cord demyelination indicating that these are pathogenic subset of CD8 T cells. Our study suggests that CD8+ T cells play both regulatory as well as pathogenic role in disease pathogenesis of EAE. A better understanding of these subsets could aid in designing novel therapy for MS patients.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Antígeno HLA-DR3/genética , Proteína Proteolipídica de la Mielina/inmunología , Traslado Adoptivo , Animales , Células Presentadoras de Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Comunicación Celular/inmunología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Citocinas/inmunología , Citocinas/metabolismo , Citotoxicidad Inmunológica , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/inmunología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/genética , Antígeno HLA-DR3/inmunología , Subunidad beta del Receptor de Interleucina-2/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Proteolipídica de la Mielina/efectos adversos , Proteína Proteolipídica de la Mielina/química , Neuroglía/inmunología
18.
Adv Exp Med Biol ; 750: 44-55, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22903665

RESUMEN

Naturally occurring autoantibodies (NAbs) are common in normal humans. The majority of NAbs are IgMs, but a small proportion are IgGs. Therefore a certain portion of pooled whole human IgG (IVIG) can be considered NAbs. While the applications of IVIG to modulate human disease have increased dramatically, the use of IgMs as drugs has lagged. In fact, much of the contaminating IgM component of IVIG is disposed of as waste. However, a number of model studies, including those targeting Alzheimer and multiple sclerosis (MS) suggest that IgMs may better modulate disease at much lower doses than IVIG. Our own studies in a model of MS show that polyclonal human IgM promotes better remyelination than IVIG and that monoclonal IgMs promote greater remyelination than monoclonal IgGs containing identical variable region sequences. We propose that this difference is due to the ability of IgM to cross link cell surface antigens better than IgGs and induce signals in nervous system cells. Monoclonal antibodies (mAbs) that promote remyelination induce a transient Ca(2+) influx in myelin forming cells, whereas IgGs with identical variable sequences do not. MAbs that promote remyelination were identified in human serum and in EBV-immortalized human B-cell lines obtained from normal adults, fetal cord blood, and rheumatoid arthritis and MS patients. Therefore therapeutic mAbs are present and common in normal circulation. All therapeutic mAbs were IgMs and bound to nervous system cells, however, the tissue binding patterns suggest that binding any one of multiple antigens induces repair. An expression vector was constructed that can manufacture gram quantities of recombinant monoclonal human IgM. Therefore the technology exists to determine whether human monoclonal NAbs can modulate human disease. IVIG can modulate neurologic disease, but using IVIG to treat these chronic diseases is unsustainable. A long-term solution is to identify the functional component of IVIG and test whether a recombinant human monoclonal can replicate its efficacy.


Asunto(s)
Enfermedad de Alzheimer/terapia , Autoanticuerpos/inmunología , Inmunoglobulina M/uso terapéutico , Inmunoglobulinas Intravenosas/uso terapéutico , Esclerosis Múltiple/terapia , Enfermedad de Alzheimer/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Linfocitos B/inmunología , Calcio/inmunología , Calcio/metabolismo , Humanos , Inmunización Pasiva , Inmunoglobulina M/inmunología , Inmunoglobulinas Intravenosas/inmunología , Esclerosis Múltiple/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico
19.
J Neurochem ; 119(1): 100-12, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21824142

RESUMEN

Mouse and human IgMs support neurite extension from primary cerebellar granule neurons. In this study using primary hippocampal and cortical neurons, we demonstrate that a recombinant human IgM, rHIgM12, promotes axon outgrowth by coupling membrane domains (lipid rafts) to microtubules. rHIgM12 binds to the surface of neuron and induces clustering of cholesterol and ganglioside GM1. After cell binding and membrane fractionation, rHIgM12 gets segregated into two pools, one associated with lipid raft fractions and the other with the detergent-insoluble cytoskeleton-containing pellet. Membrane-bound rHIgM12 co-localized with microtubules and co-immuno precipitated with ß3-tubulin. rHIgM12-membrane interaction also enhanced the tyrosination of α-tubulin indicating a stabilization of new neurites. When presented as a substrate, rHIgM12 induced axon outgrowth from primary neurons. We now demonstrate that a recombinant human mAb can induce signals in neurons that regulate membrane lipids and microtubule dynamics required for axon extension. We propose that the pentameric structure of the IgM is critical to cross-link membrane lipids and proteins resulting in signaling cascades.


Asunto(s)
Axones/fisiología , Inmunoglobulina M/fisiología , Microdominios de Membrana/fisiología , Microtúbulos/fisiología , Animales , Caveolina 1/metabolismo , Células Cultivadas , Centrifugación por Gradiente de Densidad , Colesterol/metabolismo , Gangliósido G(M1)/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Humanos , Inmunohistoquímica , Inmunoprecipitación , Ratones , Neurogénesis/fisiología , Proteínas Recombinantes/farmacología , Transducción de Señal/fisiología , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
20.
J Immunol ; 182(4): 2502-10, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19201906

RESUMEN

Asthma is thought to result from dysregulated Th2-like airway inflammatory responses to the environment. Although the etiology of asthma is not fully understood in humans, clinical and epidemiological evidence suggest a potential link between exposure to environmental fungi, such as Alternaria, and development and/or exacerbation of asthma. The goal of this project was to investigate the mechanisms of airway Th2 responses by using Alternaria as a clinically relevant model for environmental exposure. Airway exposure of naive animals to an experimental Ag, OVA, or a common allergen, short ragweed pollen, induced no or minimal immune responses to these Ags. In contrast, mice developed strong Th2-like immune responses when they were exposed to these Ags in the presence of Alternaria extract. Extracts of other fungi, such as Aspergillus and Candida, showed similar Th2 adjuvant effects, albeit not as potently. Alternaria stimulated bone marrow-derived dendritic cells (DCs) to express MHC class II and costimulatory molecules, including OX40 ligand, in vitro. Importantly, Alternaria inhibited IL-12 production by activated DCs, and DCs exposed to Alternaria enhanced Th2 polarization of CD4(+) T cells. Furthermore, adoptive airway transfer of DCs, which had been pulsed with OVA in the presence of Alternaria, showed that the recipient mice had enhanced IgE Ab production and Th2-like airway responses to OVA. Thus, the asthma-related environmental fungus Alternaria produces potent Th2-like adjuvant effects in the airways. Such immunogenic properties of certain environmental fungi may explain their strong relationships with human asthma and allergic diseases.


Asunto(s)
Alérgenos/inmunología , Alternaria/inmunología , Asma/inmunología , Asma/microbiología , Células Dendríticas/inmunología , Células Th2/inmunología , Traslado Adoptivo , Ambrosia/inmunología , Animales , Citocinas/biosíntesis , Citocinas/inmunología , Ratones , Ratones Transgénicos , Ovalbúmina/inmunología , Polen/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA