RESUMEN
The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon (e-ph) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm2) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods.
RESUMEN
Excited state dynamics of trinary star-shaped dendritic compounds with triphenylamine arms and different cores were studied by means of time-resolved fluorescence and transient absorption. Under optical excitation, nonpolar C3 symmetry molecules form polar excited states localized on one of the molecular substituents. Conformational excited state stabilization of molecules with an electron-accepting core causes a formation of twisted internal charge transfer (TICT) states in polar solvents. A low transition dipole moment from TICT state to the ground state causes very weak fluorescence of those compounds and strong dependence on the solvent polarity. The compound formed from the triphenylamine central core and identical arms also experiences excited state twisting, however, weakly sensitive to the solvent polarity.
RESUMEN
In the present research diamond-like carbon (DLC) films containing 4-29 at.% of silicon were deposited by reactive magnetron sputtering of carbon target. Study by X-ray photoelectron spectroscopy revealed the presence of Si-C bonds in the films. Nevertheless, a significant amount of Si-O-C and Si-Ox bonds was present too. The shape of the Raman scattering spectra of all studied diamond-like carbon containing silicon (DLC:Si) films was typical for diamond-like carbon. However, some peculiarities related to silicon doping were found. Studies on the dependence of DLC:Si of the optical transmittance spectra on the Si atomic concentration have shown that doping by silicon affects linear, as well as nonlinear, optical properties of the films. It is shown that the normalized reflectance of DLC:Si films decreased with the increased exciting light fluence. No clear relation between the normalized reflectance and photoexcited charge carrier relaxation time was found. It was suggested that that the normalized reflectance decrease with fluence can be related to nonlinear optical properties of the hydrogenated diamond-like carbon phase in DLC:Si film.
RESUMEN
Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.