Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 83(6): 1949-1963, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31670858

RESUMEN

PURPOSE: The purpose of this study was to further develop and combine several innovative sequence designs to achieve quantitative 3D myocardial perfusion. These developments include an optimized 3D stack-of-stars readout (150 ms per beat), efficient acquisition of a 2D arterial input function, tailored saturation pulse design, and potential whole heart coverage during quantitative stress perfusion. THEORY AND METHODS: All studies were performed free-breathing on a Prisma 3T MRI scanner. Phantom validation was used to verify sequence accuracy. A total of 21 subjects (3 patients with known disease) were scanned, 12 with a rest only protocol and 9 with both stress (regadenoson) and rest protocols. First pass quantitative perfusion was performed with gadoteridol (0.075 mmol/kg). RESULTS: Implementation and quantitative perfusion results are shown for healthy subjects and subjects with known coronary disease. Average rest perfusion for the 15 included healthy subjects was 0.79 ± 0.19 mL/g/min, the average stress perfusion for 6 healthy subject studies was 2.44 ± 0.61 mL/g/min, and the average global myocardial perfusion reserve ratio for 6 healthy subjects was 3.10 ± 0.24. Perfusion deficits for 3 patients with ischemia are shown. Average resting heart rate was 59 ± 7 bpm and the average stress heart rate was 81 ± 10 bpm. CONCLUSION: This work demonstrates that a quantitative 3D myocardial perfusion sequence with the acquisition of a 2D arterial input function is feasible at high stress heart rates such as during stress. T1 values and gadolinium concentrations of the sequence match the reference standard well in a phantom, and myocardial rest and stress perfusion and myocardial perfusion reserve values are consistent with those published in literature.


Asunto(s)
Circulación Coronaria , Imagen de Perfusión Miocárdica , Algoritmos , Humanos , Imagen por Resonancia Magnética , Perfusión , Fantasmas de Imagen
2.
PLoS One ; 14(2): e0211738, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30742641

RESUMEN

PURPOSE: Dynamic contrast enhanced MRI of the heart typically acquires 2-4 short-axis (SA) slices to detect and characterize coronary artery disease. This acquisition scheme is limited by incomplete coverage of the left ventricle. We studied the feasibility of using radial simultaneous multi-slice (SMS) technique to achieve SA, 2-chamber and/or 4-chamber long-axis (2CH LA and/or 4CH LA) coverage with and without electrocardiography (ECG) gating using a motion-robust reconstruction framework. METHODS: 12 subjects were scanned at rest and/or stress, free breathing, with or without ECG gating. Multiple sets of radial SMS k-space were acquired within each cardiac cycle, and each SMS set sampled 3 parallel slices that were either SA, 2CH LA, or 4CH LA slices. The radial data was interpolated onto Cartesian space using an SMS GRAPPA operator gridding method. Self-gating and respiratory states binning of the data were done. The binning information as well as a pixel tracking spatiotemporal constrained reconstruction method were applied to obtain motion-robust image reconstructions. Reconstructions with and without the pixel tracking method were compared for signal-to-noise ratio and contrast-to-noise ratio. RESULTS: Full coverage of the heart (at least 3 SA and 3 LA slices) during the first pass of contrast at every heartbeat was achieved by using the radial SMS acquisition. The proposed pixel tracking reconstruction improves the average SNR and CNR by 21% and 30% respectively, and reduces temporal blurring for both gated and ungated acquisitions. CONCLUSION: Acquiring simultaneous multi-slice SA, 2CH LA and/or 4CH LA myocardial perfusion images in every heartbeat is feasible in both gated and ungated acquisitions. This can add confidence when detecting and characterizing coronary artery disease by revealing ischemia in different views, and by providing apical coverage that is improved relative to SA slices alone. The proposed pixel tracking framework improves the reconstruction while adding little computational cost.


Asunto(s)
Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión Miocárdica/métodos , Anciano , Técnicas de Imagen Sincronizada Cardíacas/métodos , Enfermedad Coronaria/diagnóstico , Enfermedad Coronaria/diagnóstico por imagen , Enfermedad Coronaria/fisiopatología , Electrocardiografía , Femenino , Corazón/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad
3.
Med Phys ; 44(8): 4025-4034, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28543266

RESUMEN

PURPOSE: To evaluate the use of three different pre-reconstruction interpolation methods to convert non-Cartesian k-space data to Cartesian samples such that iterative reconstructions can be performed more simply and more rapidly. METHODS: Phantom as well as cardiac perfusion radial datasets were reconstructed by four different methods. Three of the methods used pre-reconstruction interpolation once followed by a fast Fourier transform (FFT) at each iteration. The methods were: bilinear interpolation of nearest-neighbor points (BINN), 3-point interpolation, and a multi-coil interpolator called GRAPPA Operator Gridding (GROG). The fourth method performed a full non-Uniform FFT (NUFFT) at each iteration. An iterative reconstruction with spatiotemporal total variation constraints was used with each method. Differences in the images were quantified and compared. RESULTS: The GROG multicoil interpolation, the 3-point interpolation, and the NUFFT-at-each-iteration approaches produced high quality images compared to BINN, with the GROG-derived images having the fewest streaks among the three preinterpolation approaches. However, all reconstruction methods produced approximately equal results when applied to perfusion quantitation tasks. Pre-reconstruction interpolation gave approximately an 83% reduction in reconstruction time. CONCLUSION: Image quality suffers little from using a pre-reconstruction interpolation approach compared to the more accurate NUFFT-based approach. GROG-based pre-reconstruction interpolation appears to offer the best compromise by using multicoil information to perform the interpolation to Cartesian sample points prior to image reconstruction. Speed gains depend on the implementation and relatively standard optimizations on a MATLAB platform result in preinterpolation speedups of ~ 6 compared to using NUFFT at every iteration, reducing the reconstruction time from around 42 min to 7 min.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Análisis de Fourier , Humanos , Fantasmas de Imagen , Cintigrafía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA