Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 49(3): 718-721, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300098

RESUMEN

The van Cittert-Zernike theorem states that the Fourier transform of the intensity distribution function of a distant, incoherent source is equal to the complex degree of coherence. In this Letter, we present a method for measuring the complex degree of coherence in one shot by recording the interference patterns produced by multiple aperture pairs. The intensity of the sample is obtained by Fourier transforming the complex degree of coherence. The experimental verification by using a simple object is presented together with a discussion on how the method could be improved for imaging more complex samples.

2.
Opt Express ; 31(22): 36388-36401, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017792

RESUMEN

Lensless microscopy is attractive because lenses are often large, heavy and expensive. We report diffraction-limited, sub-micrometer resolution in a lensless imaging system that does not need a reference wave and imposes few restrictions on the density of the sample. We use measurements of the intensity of light scattered by the sample at multiple heights above the sample and a modified Gerchberg-Saxton algorithm to reconstruct the phase of the optical field. We introduce a pixel-splitting algorithm that increases resolution beyond the size of the sensor pixels, and implement high-dynamic-range measurements. The resolution depends on the numerical aperture of the first measurement height only, while the field of view is limited by the last measurement height only. As a result, resolution and field of view can be controlled independently. The pixel-splitting algorithm also allows imaging with light of low spatial coherence, and we show that such low coherence is beneficial for a larger field of view. Using illumination from three LEDs, we produce full-color images of biological samples. Finally, we provide a detailed analysis of the limiting factors of this lensless microscopy system. The good performance demonstrated here can allow lensless systems to replace conventional microscope objectives in some situations.

3.
Appl Opt ; 62(10): D68-D76, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132771

RESUMEN

In this paper, we demonstrate digital holographic imaging through a 27-m-long fog tube filled with ultrasonically generated fog. Its high sensitivity makes holography a powerful technology for imaging through scattering media. With our large-scale experiments, we investigate the potential of holographic imaging for road traffic applications, where autonomous driving vehicles require reliable environmental perception in all weather conditions. We compare single-shot off-axis digital holography to conventional imaging (with coherent illumination) and show that holographic imaging requires 30 times less illumination power for the same imaging range. Our work includes signal-to-noise ratio considerations, a simulation model, and quantitative statements on the influence of various physical parameters on the imaging range.

4.
Opt Express ; 30(18): 32680-32692, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242324

RESUMEN

In this work, we propose a physics-enhanced two-to-one Y-neural network (two inputs and one output) for phase retrieval of complex wavefronts from two diffraction patterns. The learnable parameters of the Y-net are optimized by minimizing a hybrid loss function, which evaluates the root-mean-square error and normalized Pearson correlated coefficient on the two diffraction planes. An angular spectrum method network is designed for self-supervised training on the Y-net. Amplitudes and phases of wavefronts diffracted by a USAF-1951 resolution target, a phase grating of 200 lp/mm, and a skeletal muscle cell were retrieved using a Y-net with 100 learning iterations. Fast reconstructions could be realized without constraints or a priori knowledge of the samples.


Asunto(s)
Redes Neurales de la Computación , Física
5.
Opt Express ; 30(8): 12545-12554, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472888

RESUMEN

Based on synchronous phase shift determination, we propose a differential phase measurement method for differential interference contrast (DIC) microscopy. An on-line phase shift measurement device is used to generate carrier interferograms and determine the phase shift of DIC images. Then the differential phase can be extracted with the least-squares phase-shifting algorithm. In addition to realizing on-line, dynamic, real-time, synchronous and high precision phase shift measurement, the proposed method also can reconstruct the phase of the specimen by using the phase-integral algorithm. The differential phase measurement method reveals obvious advantages in error compensation, anti-interference, and noise suppression. Both simulation analysis and experimental result demonstrate that using the proposed method, the accuracy of phase shift measurement is higher than 0.007 rad. Very accurate phase reconstructions were obtained with both polystyrene microspheres and human vascular endothelial.


Asunto(s)
Algoritmos , Simulación por Computador , Humanos
6.
Opt Lett ; 47(14): 3564-3567, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838731

RESUMEN

This Letter presents a ray phase mapping model (RPM) for fringe projection profilometry (FPP) that avoids calibrating intrinsic parameters. The novelty of the RPM, to the best of our knowledge, is the ability to characterize the imaging system with independent rays for each pixel, and to associate the rays with the projected phase in the illumination field for efficient 3D mapping, which avoids complex imaging-specific modeling about lens layout and distortion. Two loss functions are constructed to flexibly optimize camera ray parameters and mapping coefficients, respectively. As a universal approach, it has the potential to calibrate different types of FPP systems with high accuracy. Experiments on wide-angle lens FPP, telecentric lens FPP, and micro-electromechanical system (MEMS)-based FPP are carried out to verify the feasibility of the proposed method.

7.
Appl Opt ; 61(5): B271-B278, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35201149

RESUMEN

In this paper, we show how high-resolution phase imaging is obtained from multiple intensity diffraction patterns. The results of the experiments carried out with different microscopic phase and amplitude samples illuminated with coherent and partially coherent light are presented. A comparison with experimental results obtained by digital holographic microscopy is given, and advantages/disadvantages of the techniques are discussed.

8.
Opt Express ; 29(3): 4530-4546, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771029

RESUMEN

Scatter-plate microscopy (SPM) is a lensless imaging technique for high-resolution imaging through scattering media. So far, the method was demonstrated for spatially incoherent illumination and static scattering media. In this publication, we demonstrate that these restrictions are not necessary. We realized imaging with spatially coherent and spatially incoherent illumination. We further demonstrate that SPM is still a valid imaging method for scatter-plates, which change their scattering behaviour (i.e. the phase-shift) at each position on the plate continuously but independently from other positions. Especially we realized imaging through rotating ground glass diffusers.

9.
Opt Express ; 29(13): 19247-19261, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266038

RESUMEN

Structured illumination digital holographic microscopy (SI-DHM) is a high-resolution, label-free technique enabling us to image unstained biological samples. SI-DHM has high requirements on the stability of the experimental setup and needs long exposure time. Furthermore, image synthesizing and phase correcting in the reconstruction process are both challenging tasks. We propose a deep-learning-based method called DL-SI-DHM to improve the recording, the reconstruction efficiency and the accuracy of SI-DHM and to provide high-resolution phase imaging. In the training process, high-resolution amplitude and phase images obtained by phase-shifting SI-DHM together with wide-field amplitudes are used as inputs of DL-SI-DHM. The well-trained network can reconstruct both the high-resolution amplitude and phase images from a single wide-field amplitude image. Compared with the traditional SI-DHM, this method significantly shortens the recording time and simplifies the reconstruction process and complex phase correction, and frequency synthesizing are not required anymore. By comparsion, with other learning-based reconstruction schemes, the proposed network has better response to high frequencies. The possibility of using the proposed method for the investigation of different biological samples has been experimentally verified, and the low-noise characteristics were also proved.

10.
Opt Express ; 29(22): 35078-35118, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34808951

RESUMEN

This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography.


Asunto(s)
Holografía/métodos , Imagenología Tridimensional/métodos , Algoritmos , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Tomografía , Realidad Virtual
11.
Opt Lett ; 46(7): 1716-1719, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33793526

RESUMEN

In this Letter, we describe a method for retrieving the phase of a wavefield from a volume diffraction pattern. We show at first that the magnitude of the 3D Fourier transform of a diffracted volume wavefield is concentrated around a paraboloid. For the phase retrieval, we apply iteratively the constraints of the measured intensity and the paraboloid (sparsity) constraint in the 3D Fourier domain. Experimental validations and comparisons to other methods are presented.

12.
Opt Lett ; 46(10): 2473-2476, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988613

RESUMEN

Based on the optical memory effect of scattered light, we developed a new single-pixel camera concept. The retrieved images contain both 3D and spectral information about the sample. A spatial light modulator (SLM) generates a random intensity modulation. The signal recorded by the single-pixel detector is cross correlated by the calculated point spread function (PSF) signals of the SLM to retrieve the image. In this publication, both simulations and experimental results are presented.

13.
Appl Opt ; 60(12): 3517-3525, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33983260

RESUMEN

In this paper we describe a phase retrieval algorithm using constraints given by diffraction patterns and phase difference obtained from bidirectional interference. Wave propagation and linear phase ramps are used to connect the recordings. At least three patterns are recorded and processed (two diffraction patterns and one interference pattern). The quality of the results can be improved when recording and processing more patterns. The method works well with non-sparse samples and short (few millimeter) recording distances. Simulations, comparisons with other methods, and experimental validations are presented.

14.
Opt Express ; 28(19): 28140-28153, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32988091

RESUMEN

In this manuscript, we propose a quantitative phase imaging method based on deep learning, using a single wavelength illumination to realize dual-wavelength phase-shifting phase recovery. By using the conditional generative adversarial network (CGAN), from one interferogram recorded at a single wavelength, we obtain interferograms at other wavelengths, the corresponding wrapped phases and then the phases at synthetic wavelengths. The feasibility of the proposed method is verified by simulation and experiments. The results demonstrate that the measurement range of single-wavelength interferometry (SWI) is improved by keeping a simple setup, avoiding the difficulty caused by using two wavelengths simultaneously. This will provide an effective solution for the problem of phase unwrapping and the measurement range limitation in phase-shifting interferometry.

15.
Opt Express ; 28(3): 4156-4168, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32122073

RESUMEN

Light-field imaging can simultaneously record spatio-angular information of light rays to carry out depth estimation via depth cues which reflect a coupling of the angular information and the scene depth. However, the unavoidable imaging distortion in a light-field imaging system has a side effect on the spatio-angular coordinate computation, leading to incorrectly estimated depth maps. Based on the previously established unfocused plenoptic metric model, this paper reports a study on the effect of the plenoptic imaging distortion on the light-field depth estimation. A method of light-field depth estimation considering the plenoptic imaging distortion is proposed. Besides, the accuracy analysis of the light-field depth estimation was performed by using standard components. Experimental results demonstrate that efficiently compensating the plenoptic imaging distortion results in a six-fold improvement in measuring accuracy and more consistency across the measuring depth range. Consequently, the proposed method is proved to be suitable for light-field depth estimation and three-dimensional measurement with high quality, enabling unfocused plenoptic cameras to be metrological tools in the potential application scenarios such as industry, biomedicine, entertainment, and many others.

16.
Opt Express ; 28(23): 34266-34278, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182900

RESUMEN

Dark-field microscopy is a powerful technique for enhancing the imaging resolution and contrast of small unstained samples. In this study, we report a method based on end-to-end convolutional neural network to reconstruct high-resolution dark-field images from low-resolution bright-field images. The relation between bright- and dark-field which was difficult to deduce theoretically can be obtained by training the corresponding network. The training data, namely the matched bright- and dark-field images of the same object view, are simultaneously obtained by a special designed multiplexed image system. Since the image registration work which is the key step in data preparation is not needed, the manual error can be largely avoided. After training, a high-resolution numerical dark-field image is generated from a conventional bright-field image as the input of this network. We validated the method by the resolution test target and quantitative analysis of the reconstructed numerical dark-field images of biological tissues. The experimental results show that the proposed learning-based method can realize the conversion from bright-field image to dark-field image, so that can efficiently achieve high-resolution numerical dark-field imaging. The proposed network is universal for different kinds of samples. In addition, we also verify that the proposed method has good anti-noise performance and is not affected by the unstable factors caused by experiment setup.

17.
Opt Lett ; 45(12): 3256-3259, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538956

RESUMEN

This Letter reports an approach to single-shot three-dimensional (3D) imaging that is combining structured illumination and light-field imaging. The sinusoidal distribution of the radiance in the structured-light field can be processed and transformed to compute the angular variance of the local radiance difference. The angular variance across the depth range exhibits a single-peak distribution trend that can be used to obtain the unambiguous depth. The phase computation that generally requires the acquisition of multi-frame phase-shifting images is no longer mandatory, thus enabling single-shot structured-light-field 3D imaging. The proposed approach was experimentally demonstrated through a dynamic scene.

18.
Opt Express ; 27(15): 20177-20198, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510117

RESUMEN

For unfocused plenoptic imaging systems, metric calibration is generally mandatory to achieve high-quality imaging and metrology. In this paper, we present an explicit derivation of an unfocused plenoptic metric model associating a measured light field in the object space with a recorded light field in the image space to conform physically to the imaging properties of unfocused plenoptic cameras. In addition, the impact of unfocused plenoptic imaging distortion on depth computation was experimentally explored, revealing that radial distortion parameters contain depth-dependent common factors, which were then modeled as depth distortions. Consequently, a complete unfocused plenoptic metric model was established by combining the explicit metric model with the imaging distortion model. A three-step unfocused plenoptic metric calibration strategy, in which the Levenberg-Marquardt algorithm is used for parameter optimization, is correspondingly proposed to determine 12 internal parameters for each microlens unit. Based on the proposed modeling and calibration, the depth measurement precision can be increased to 0.25 mm in a depth range of 300 mm, ensuring the potential applicability of consumer unfocused plenoptic cameras in high-accuracy three-dimensional measurement.

19.
Opt Express ; 27(16): 23049-23058, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510587

RESUMEN

We investigated the capabilities of deconvolution for image enhancement in scatter-plate microscopy. This lensless imaging technique enables the investigation of microstructures through scattering media by cross-correlating the scattered light intensity with a previously recorded point spread function (PSF) of the scattering medium. The autocorrelation function of the PSF appears as the transfer function of the imaging process. Deconvolution methods use the knowledge of this transfer function to enhance the image quality by reducing the blur and strengthening the contrast with the objective to achieve diffraction-limited resolution. We obtained significant image enhancement both with means of inverse filtering and by applying iterative deconvolution algorithms.

20.
Opt Express ; 27(9): 13532-13546, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31052874

RESUMEN

Passive light field imaging generally uses depth cues that depend on the image structure to perform depth estimation, causing robustness and accuracy problems in complex scenes. In this study, the commonly used depth cues, defocus and correspondence, were analyzed by using phase encoding instead of the image structure. The defocus cue obtained by spatial variance is insensitive to the global spatial monotonicity of the phase-encoded field. In contrast, the correspondence cue is sensitive to the angular variance of the phase-encoded field, and the correspondence responses across the depth range have single-peak distributions. Based on this analysis, a novel active light field depth estimation method is proposed by directly using the correspondence cue in the structured light field to search for non-ambiguous depths, and thus no optimization is required. Furthermore, the angular variance can be weighted to reduce the depth estimation uncertainty according to the phase encoding information. The depth estimation of an experimental scene with rich colors demonstrated that the proposed method could distinguish different depth regions in each color segment more clearly, and was substantially improved in terms of phase consistency compared to the passive method, thus verifying its robustness and accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA