Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 37(6): e5129, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494431

RESUMEN

Proton magnetic resonance spectroscopy (1H-MRS) is increasingly used for clinical brain tumour diagnosis, but suffers from limited spectral quality. This retrospective and comparative study aims at improving paediatric brain tumour classification by performing noise suppression on clinical 1H-MRS. Eighty-three/forty-two children with either an ependymoma (ages 4.6 ± 5.3/9.3 ± 5.4), a medulloblastoma (ages 6.9 ± 3.5/6.5 ± 4.4), or a pilocytic astrocytoma (8.0 ± 3.6/6.3 ± 5.0), recruited from four centres across England, were scanned with 1.5T/3T short-echo-time point-resolved spectroscopy. The acquired raw 1H-MRS was quantified by using Totally Automatic Robust Quantitation in NMR (TARQUIN), assessed by experienced spectroscopists, and processed with adaptive wavelet noise suppression (AWNS). Metabolite concentrations were extracted as features, selected based on multiclass receiver operating characteristics, and finally used for identifying brain tumour types with supervised machine learning. The minority class was oversampled through the synthetic minority oversampling technique for comparison purposes. Post-noise-suppression 1H-MRS showed significantly elevated signal-to-noise ratios (P < .05, Wilcoxon signed-rank test), stable full width at half-maximum (P > .05, Wilcoxon signed-rank test), and significantly higher classification accuracy (P < .05, Wilcoxon signed-rank test). Specifically, the cross-validated overall and balanced classification accuracies can be improved from 81% to 88% overall and 76% to 86% balanced for the 1.5T cohort, whilst for the 3T cohort they can be improved from 62% to 76% overall and 46% to 56%, by applying Naïve Bayes on the oversampled 1H-MRS. The study shows that fitting-based signal-to-noise ratios of clinical 1H-MRS can be significantly improved by using AWNS with insignificantly altered line width, and the post-noise-suppression 1H-MRS may have better diagnostic performance for paediatric brain tumours.


Asunto(s)
Neoplasias Encefálicas , Espectroscopía de Protones por Resonancia Magnética , Relación Señal-Ruido , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Niño , Espectroscopía de Protones por Resonancia Magnética/métodos , Femenino , Masculino , Preescolar , Adolescente , Estudios Retrospectivos , Lactante
2.
NMR Biomed ; 37(5): e5101, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38303627

RESUMEN

1H-magnetic resonance spectroscopy (MRS) has the potential to improve the noninvasive diagnostic accuracy for paediatric brain tumours. However, studies analysing large, comprehensive, multicentre datasets are lacking, hindering translation to widespread clinical practice. Single-voxel MRS (point-resolved single-voxel spectroscopy sequence, 1.5 T: echo time [TE] 23-37 ms/135-144 ms, repetition time [TR] 1500 ms; 3 T: TE 37-41 ms/135-144 ms, TR 2000 ms) was performed from 2003 to 2012 during routine magnetic resonance imaging for a suspected brain tumour on 340 children from five hospitals with 464 spectra being available for analysis and 281 meeting quality control. Mean spectra were generated for 13 tumour types. Mann-Whitney U-tests and Kruskal-Wallis tests were used to compare mean metabolite concentrations. Receiver operator characteristic curves were used to determine the potential for individual metabolites to discriminate between specific tumour types. Principal component analysis followed by linear discriminant analysis was used to construct a classifier to discriminate the three main central nervous system tumour types in paediatrics. Mean concentrations of metabolites were shown to differ significantly between tumour types. Large variability existed across each tumour type, but individual metabolites were able to aid discrimination between some tumour types of importance. Complete metabolite profiles were found to be strongly characteristic of tumour type and, when combined with the machine learning methods, demonstrated a diagnostic accuracy of 93% for distinguishing between the three main tumour groups (medulloblastoma, pilocytic astrocytoma and ependymoma). The accuracy of this approach was similar even when data of marginal quality were included, greatly reducing the proportion of MRS excluded for poor quality. Children's brain tumours are strongly characterised by MRS metabolite profiles readily acquired during routine clinical practice, and this information can be used to support noninvasive diagnosis. This study provides both key evidence and an important resource for the future use of MRS in the diagnosis of children's brain tumours.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Humanos , Niño , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética
3.
NMR Biomed ; 35(2): e4630, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34647377

RESUMEN

1 H-magnetic resonance spectroscopy (MRS) provides noninvasive metabolite profiles with the potential to aid the diagnosis of brain tumours. Prospective studies of diagnostic accuracy and comparisons with conventional MRI are lacking. The aim of the current study was to evaluate, prospectively, the diagnostic accuracy of a previously established classifier for diagnosing the three major childhood cerebellar tumours, and to determine added value compared with standard reporting of conventional imaging. Single-voxel MRS (1.5 T, PRESS, TE 30 ms, TR 1500 ms, spectral resolution 1 Hz/point) was acquired prospectively on 39 consecutive cerebellar tumours with histopathological diagnoses of pilocytic astrocytoma, ependymoma or medulloblastoma. Spectra were analysed with LCModel and predefined quality control criteria were applied, leaving 33 cases in the analysis. The MRS diagnostic classifier was applied to this dataset. A retrospective analysis was subsequently undertaken by three radiologists, blind to histopathological diagnosis, to determine the change in diagnostic certainty when sequentially viewing conventional imaging, MRS and a decision support tool, based on the classifier. The overall classifier accuracy, evaluated prospectively, was 91%. Incorrectly classified cases, two anaplastic ependymomas, and a rare histological variant of medulloblastoma, were not well represented in the original training set. On retrospective review of conventional MRI, MRS and the classifier result, all radiologists showed a significant increase (Wilcoxon signed rank test, p < 0.001) in their certainty of the correct diagnosis, between viewing the conventional imaging and MRS with the decision support system. It was concluded that MRS can aid the noninvasive diagnosis of posterior fossa tumours in children, and that a decision support classifier helps in MRS interpretation.


Asunto(s)
Neoplasias Cerebelosas/diagnóstico , Espectroscopía de Resonancia Magnética/métodos , Adolescente , Neoplasias Cerebelosas/patología , Niño , Preescolar , Sistemas de Apoyo a Decisiones Clínicas , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Estudios Prospectivos
4.
NMR Biomed ; 35(6): e4673, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35088473

RESUMEN

MRS can provide high accuracy in the diagnosis of childhood brain tumours when combined with machine learning. A feature selection method such as principal component analysis is commonly used to reduce the dimensionality of metabolite profiles prior to classification. However, an alternative approach of identifying the optimal set of metabolites has not been fully evaluated, possibly due to the challenges of defining this for a multi-class problem. This study aims to investigate metabolite selection from in vivo MRS for childhood brain tumour classification. Multi-site 1.5 T and 3 T cohorts of patients with a brain tumour and histological diagnosis of ependymoma, medulloblastoma and pilocytic astrocytoma were retrospectively evaluated. Dimensionality reduction was undertaken by selecting metabolite concentrations through multi-class receiver operating characteristics and compared with principal component analysis. Classification accuracy was determined through leave-one-out and k-fold cross-validation. Metabolites identified as crucial in tumour classification include myo-inositol (P < 0.05, AUC=0.81±0.01 ), total lipids and macromolecules at 0.9 ppm (P < 0.05, AUC=0.78±0.01 ) and total creatine (P < 0.05, AUC=0.77±0.01 ) for the 1.5 T cohort, and glycine (P < 0.05, AUC=0.79±0.01 ), total N-acetylaspartate (P < 0.05, AUC=0.79±0.01 ) and total choline (P < 0.05, AUC=0.75±0.01 ) for the 3 T cohort. Compared with the principal components, the selected metabolites were able to provide significantly improved discrimination between the tumours through most classifiers (P < 0.05). The highest balanced classification accuracy determined through leave-one-out cross-validation was 85% for 1.5 T 1 H-MRS through support vector machine and 75% for 3 T 1 H-MRS through linear discriminant analysis after oversampling the minority. The study suggests that a group of crucial metabolites helps to achieve better discrimination between childhood brain tumours.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Neoplasias Encefálicas/metabolismo , Humanos , Aprendizaje Automático , Estudios Retrospectivos , Máquina de Vectores de Soporte
5.
J Magn Reson Imaging ; 56(1): 147-157, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34842328

RESUMEN

BACKGROUND: Medulloblastoma, ependymoma, and pilocytic astrocytoma are common pediatric posterior fossa tumors. These tumors show overlapping characteristics on conventional MRI scans, making diagnosis difficult. PURPOSE: To investigate whether apparent diffusion coefficient (ADC) values differ between tumor types and to identify optimum cut-off values to accurately classify the tumors using different performance metrics. STUDY TYPE: Systematic review and meta-analysis. SUBJECTS: Seven studies reporting ADC in pediatric posterior fossa tumors (115 medulloblastoma, 68 ependymoma, and 86 pilocytic astrocytoma) were included following PubMed and ScienceDirect searches. SEQUENCE AND FIELD STRENGTH: Diffusion weighted imaging (DWI) was performed on 1.5 and 3 T across multiple institution and vendors. ASSESSMENT: The combined mean and standard deviation of ADC were calculated for each tumor type using a random-effects model, and the effect size was calculated using Hedge's g. STATISTICAL TESTS: Sensitivity/specificity, weighted classification accuracy, balanced classification accuracy. A P value < 0.05 was considered statistically significant, and a Hedge's g value of >1.2 was considered to represent a large difference. RESULTS: The mean (± standard deviation) ADCs of medulloblastoma, ependymoma, and pilocytic astrocytoma were 0.76 ± 0.16, 1.10 ± 0.10, and 1.49 ± 0.16 mm2 /sec × 10-3 . To maximize sensitivity and specificity using the mean ADC, the cut-off was found to be 0.96 mm2 /sec × 10-3 for medulloblastoma and ependymoma and 1.26 mm2 /sec × 10-3 for ependymoma and pilocytic astrocytoma. The meta-analysis showed significantly different ADC distributions for the three posterior fossa tumors. The cut-off values changed markedly (up to 7%) based on the performance metric used and the prevalence of the tumor types. DATA CONCLUSION: There were significant differences in ADC between tumor types. However, it should be noted that only summary statistics from each study were analyzed and there were differences in how regions of interest were defined between studies. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.


Asunto(s)
Astrocitoma , Neoplasias Cerebelosas , Ependimoma , Neoplasias Infratentoriales , Meduloblastoma , Astrocitoma/diagnóstico por imagen , Neoplasias Cerebelosas/diagnóstico por imagen , Neoplasias Cerebelosas/patología , Niño , Diagnóstico Diferencial , Imagen de Difusión por Resonancia Magnética/métodos , Ependimoma/diagnóstico por imagen , Ependimoma/patología , Humanos , Neoplasias Infratentoriales/diagnóstico por imagen , Neoplasias Infratentoriales/patología , Meduloblastoma/diagnóstico por imagen , Estudios Retrospectivos
6.
Pediatr Radiol ; 52(6): 1134-1149, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35290489

RESUMEN

BACKGROUND: Relative cerebral blood volume (rCBV) measured using dynamic susceptibility-contrast MRI can differentiate between low- and high-grade pediatric brain tumors. Multicenter studies are required for translation into clinical practice. OBJECTIVE: We compared leakage-corrected dynamic susceptibility-contrast MRI perfusion parameters acquired at multiple centers in low- and high-grade pediatric brain tumors. MATERIALS AND METHODS: Eighty-five pediatric patients underwent pre-treatment dynamic susceptibility-contrast MRI scans at four centers. MRI protocols were variable. We analyzed data using the Boxerman leakage-correction method producing pixel-by-pixel estimates of leakage-uncorrected (rCBVuncorr) and corrected (rCBVcorr) relative cerebral blood volume, and the leakage parameter, K2. Histological diagnoses were obtained. Tumors were classified by high-grade tumor. We compared whole-tumor median perfusion parameters between low- and high-grade tumors and across tumor types. RESULTS: Forty tumors were classified as low grade, 45 as high grade. Mean whole-tumor median rCBVuncorr was higher in high-grade tumors than low-grade tumors (mean ± standard deviation [SD] = 2.37±2.61 vs. -0.14±5.55; P<0.01). Average median rCBV increased following leakage correction (2.54±1.63 vs. 1.68±1.36; P=0.010), remaining higher in high-grade tumors than low grade-tumors. Low-grade tumors, particularly pilocytic astrocytomas, showed T1-dominant leakage effects; high-grade tumors showed T2*-dominance (mean K2=0.017±0.049 vs. 0.002±0.017). Parameters varied with tumor type but not center. Median rCBVuncorr was higher (mean = 1.49 vs. 0.49; P=0.015) and K2 lower (mean = 0.005 vs. 0.016; P=0.013) in children who received a pre-bolus of contrast agent compared to those who did not. Leakage correction removed the difference. CONCLUSION: Dynamic susceptibility-contrast MRI acquired at multiple centers helped distinguish between children's brain tumors. Relative cerebral blood volume was significantly higher in high-grade compared to low-grade tumors and differed among common tumor types. Vessel leakage correction is required to provide accurate rCBV, particularly in low-grade enhancing tumors.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Volumen Sanguíneo Cerebral , Niño , Medios de Contraste , Humanos , Imagen por Resonancia Magnética/métodos
7.
Magn Reson Med ; 82(2): 527-550, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30919510

RESUMEN

Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/metabolismo , Consenso , Humanos , Protones
8.
J Magn Reson Imaging ; 49(1): 195-203, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29697883

RESUMEN

BACKGROUND: Metabolite concentrations are fundamental biomarkers of disease and prognosis. Magnetic resonance spectroscopy (MRS) is a noninvasive method for measuring metabolite concentrations; however, quantitation is affected by T2 relaxation. PURPOSE: To estimate T2 relaxation times in pediatric brain tumors and assess how variation in T2 relaxation affects metabolite quantification. STUDY TYPE: Retrospective. POPULATION: Twenty-seven pediatric brain tumor patients (n = 17 pilocytic astrocytoma and n = 10 medulloblastoma) and 24 age-matched normal controls. FIELD STRENGTH/SEQUENCE: Short- (30 msec) and long-echo (135 msec) single-voxel MRS acquired at 1.5T. ASSESSMENT: T2 relaxation times were estimated by fitting signal amplitudes at two echo times to a monoexponential decay function and were used to correct metabolite concentration estimates for relaxation effects. STATISTICAL TESTS: One-way analysis of variance (ANOVA) on ranks were used to analyze the mean T2 relaxation times and metabolite concentrations for each tissue group and paired Mann-Whitney U-tests were performed. RESULTS: The mean T2 relaxation of water was measured as 181 msec, 123 msec, 90 msec, and 86 msec in pilocytic astrocytomas, medulloblastomas, basal ganglia, and white matter, respectively. The T2 of water was significantly longer in both tumor groups than normal brain (P < 0.001) and in pilocytic astrocytomas compared with medulloblastomas (P < 0.01). The choline T2 relaxation time was significantly longer in medulloblastomas compared with pilocytic astrocytomas (P < 0.05), while the T2 relaxation time of NAA was significantly shorter in pilocytic astrocytomas compared with normal brain (P < 0.001). Overall, the metabolite concentrations were underestimated by ∼22% when default T2 values were used compared with case-specific T2 values at short echo time. The difference was reduced to 4% when individually measured water T2 s were used. DATA CONCLUSION: Differences exist in water and metabolite T2 relaxation times for pediatric brain tumors, which lead to significant underestimation of metabolite concentrations when using default water T2 relaxation times. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:195-203.


Asunto(s)
Astrocitoma/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Encéfalo/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Meduloblastoma/diagnóstico por imagen , Ácido Aspártico/metabolismo , Niño , Colina/metabolismo , Creatina/metabolismo , Femenino , Humanos , Masculino , Control de Calidad , Valores de Referencia , Reproducibilidad de los Resultados , Estudios Retrospectivos
9.
MAGMA ; 32(2): 247-258, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30460431

RESUMEN

OBJECTIVE: To develop and assess a short-duration JPRESS protocol for detection of overlapping metabolite biomarkers and its application to paediatric brain tumours at 3 Tesla. MATERIALS AND METHODS: The short-duration protocol (6 min) was optimised and compared for spectral quality to a high-resolution (38 min) JPRESS protocol in a phantom and five healthy volunteers. The 6-min JPRESS was acquired from four paediatric brain tumours and compared with short-TE PRESS. RESULTS: Metabolite identification between the 6- and 38-min protocols was comparable in phantom and volunteer data. For metabolites with Cramer-Rao lower bounds > 50%, interpretation of JPRESS increased confidence in assignment of lactate, myo-Inositol and scyllo-Inositol. JPRESS also showed promise for the detection of glycine and taurine in paediatric brain tumours when compared to short-TE MRS. CONCLUSION: A 6-min JPRESS protocol is well tolerated in paediatric brain tumour patients. Visual inspection of a 6-min JPRESS spectrum enables identification of a range of metabolite biomarkers of clinical interest.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Adulto , Encéfalo/metabolismo , Niño , Femenino , Glicina/metabolismo , Voluntarios Sanos , Humanos , Inositol/metabolismo , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética/estadística & datos numéricos , Masculino , Fantasmas de Imagen , Taurina/metabolismo , Adulto Joven
10.
NMR Biomed ; 31(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29073725

RESUMEN

Brain tumours are the most common solid cancers in children in the UK and are the most common cause of cancer deaths in this age group. Despite current advances in MRI, non-invasive diagnosis of paediatric brain tumours has yet to find its way into routine clinical practice. Radiomics, the high-throughput extraction and analysis of quantitative image features (e.g. texture), offers potential solutions for tumour characterization and decision support. In the search for diagnostic oncological markers, the primary aim of this work was to study the application of MRI texture analysis (TA) for the classification of paediatric brain tumours. A multicentre study was carried out, within a supervised classification framework, on clinical MR images, and a support vector machine (SVM) was trained with 3D textural attributes obtained from conventional MRI. To determine the cross-centre transferability of TA, an assessment of how SVM performs on unseen datasets was carried out through rigorous pairwise testing. The study also investigated the nature of features that are most likely to train classifiers that can generalize well with the data. Finally, the issue of class imbalance, which arises due to some tumour types being more common than others, was explored. For each of the tests carried out through pairwise testing, the optimal area under the receiver operating characteristic curve ranged between 76% and 86%, suggesting that the model was able to capture transferable tumour information. Feature selection results suggest that similar aspects of tumour texture are enhanced by MR images obtained at different hospitals. Our results also suggest that the availability of equally represented classes has enabled SVM to better characterize the data points. The findings of the study presented here support the use of 3D TA on conventional MR images to aid diagnostic classification of paediatric brain tumours.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Oncología Médica , Neurología , Pediatría , Radiación , Área Bajo la Curva , Niño , Humanos , Curva ROC , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte
11.
J Magn Reson Imaging ; 47(6): 1475-1486, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29159937

RESUMEN

BACKGROUND: Pediatric retroperitoneal tumors in the renal bed are often large and heterogeneous, and their diagnosis based on conventional imaging alone is not possible. More advanced imaging methods, such as diffusion-weighted (DW) MRI and the use of intravoxel incoherent motion (IVIM), have the potential to provide additional biomarkers that could facilitate their noninvasive diagnosis. PURPOSE: To assess the use of an IVIM model for diagnosis of childhood malignant abdominal tumors and discrimination of benign from malignant lesions. STUDY TYPE: Retrospective. POPULATION: Forty-two pediatric patients with abdominal lesions (n = 32 malignant, n = 10 benign), verified by histopathology. FIELD STRENGTH/SEQUENCE: 1.5T MRI system and a DW-MRI sequence with six b-values (0, 50, 100, 150, 600, 1000 s/mm2 ). ASSESSMENT: Parameter maps of apparent diffusion coefficient (ADC), and IVIM maps of slow diffusion coefficient (D), fast diffusion coefficient (D*), and perfusion fraction (f) were computed using a segmented fitting model. Histograms were constructed for whole-tumor regions of each parameter. STATISTICAL TESTS: Comparison of histogram parameters of and their diagnostic performance was determined using Kruskal-Wallis, Mann-Whitney U, and receiver-operating characteristic (ROC) analysis. RESULTS: IVIM parameters D* and f were significantly higher in neuroblastoma compared to Wilms' tumors (P < 0.05). The ROC analysis showed that the best diagnostic performance was achieved with D* 90th percentile (area under the curve [AUC] = 0.935; P = 0.002; cutoff value = 32,376 × 10-6 mm2 /s) and f mean values (AUC = 1.00; P < 0.001; cutoff value = 14.7) in discriminating between neuroblastoma (n = 11) and Wilms' tumors (n = 8). Discrimination between tumor types was not possible with IVIM D or ADC parameters. Malignant tumors revealed significantly lower ADC, D, and higher D* values than in benign lesions (all P < 0.05). DATA CONCLUSION: IVIM perfusion parameters could distinguish between malignant childhood tumor types, providing potential imaging biomarkers for their diagnosis. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1475-1486.


Asunto(s)
Neoplasias Abdominales/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento (Física) , Pediatría/métodos , Adolescente , Algoritmos , Biomarcadores/metabolismo , Niño , Preescolar , Diagnóstico por Computador , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Perfusión , Curva ROC , Estudios Retrospectivos
12.
Pathobiology ; 85(3): 157-168, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29428932

RESUMEN

AIMS: Metabolite levels can be measured non-invasively using in vivo 1H magnetic resonance spectroscopy (MRS). These tumour metabolite profiles are highly characteristic for tumour type in childhood brain tumours; however, the relationship between metabolite values and conventional histopathological characteristics has not yet been fully established. This study systematically tests the relationship between metabolite levels detected by MRS and specific histological features in a range of paediatric brain tumours. METHODS: Single-voxel MRS was performed routinely in children with brain tumours along with the clinical imaging prior to treatment. Metabolites were quantified using LCModel. Histological features were assessed semi-quantitatively for 27 children on H&E and immunostained slides, blind to the metabolite values. Statistical analysis included 2-tailed independent-samples t tests and 2-tailed Spearman rank correlation tests. RESULTS: Ki67, cellular atypia, and mitosis correlated positively with choline metabolites, and phosphocholine in particular. Apoptosis and necrosis were both associated with lipid levels, with the relationship dependent on the use of long or short echo time MRS acquisitions. Neuronal components correlated negatively and glial components positively with N-acetyl-aspartate. Glial components correlated positively with myoinositol. CONCLUSION: Metabolite levels in children's brain tumours measured by MRS are closely associated with key histological features routinely assessed by histopathologists in the diagnostic process. This further elucidates our understanding of this important non-invasive diagnostic tool and strengthens our understanding of the relationship between metabolites and histological features.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/metabolismo , Apoptosis , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Niño , Humanos , Antígeno Ki-67/análisis , Espectroscopía de Resonancia Magnética , Necrosis , Coloración y Etiquetado
13.
MAGMA ; 31(2): 269-283, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29075909

RESUMEN

OBJECTIVE: This study aimed to investigate the reliability of intravoxel incoherent motion (IVIM) model derived parameters D and f and their dependence on b value distributions with a rapid three b value acquisition protocol. MATERIALS AND METHODS: Diffusion models for brain, kidney, and liver were assessed for bias, error, and reproducibility for the estimated IVIM parameters using b values 0 and 1000, and a b value between 200 and 900, at signal-to-noise ratios (SNR) 40, 55, and 80. Relative errors were used to estimate optimal b value distributions for each tissue scenario. Sixteen volunteers underwent brain DW-MRI, for which bias and coefficient of variation were determined in the grey matter. RESULTS: Bias had a large influence in the estimation of D and f for the low-perfused brain model, particularly at lower b values, with the same trends being confirmed by in vivo imaging. Significant differences were demonstrated in vivo for estimation of D (P = 0.029) and f (P < 0.001) with [300,1000] and [500,1000] distributions. The effect of bias was considerably lower for the high-perfused models. The optimal b value distributions were estimated to be brain500,1000, kidney300,1000, and liver200,1000. CONCLUSION: IVIM parameters can be estimated using a rapid DW-MRI protocol, where the optimal b value distribution depends on tissue characteristics and compromise between bias and variability.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Adulto , Algoritmos , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Simulación por Computador , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Riñón/diagnóstico por imagen , Hígado/diagnóstico por imagen , Modelos Estadísticos , Movimiento (Física) , Perfusión , Reproducibilidad de los Resultados , Relación Señal-Ruido
14.
Pediatr Radiol ; 48(11): 1630-1641, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30062569

RESUMEN

BACKGROUND: A tool for diagnosing childhood cerebellar tumours using magnetic resonance (MR) spectroscopy peak height measurement has been developed based on retrospective analysis of single-centre data. OBJECTIVE: To determine the diagnostic accuracy of the peak height measurement tool in a multicentre prospective study, and optimise it by adding new prospective data to the original dataset. MATERIALS AND METHODS: Magnetic resonance imaging (MRI) and single-voxel MR spectroscopy were performed on children with cerebellar tumours at three centres. Spectra were processed using standard scanner software and peak heights for N-acetyl aspartate, creatine, total choline and myo-inositol were measured. The original diagnostic tool was used to classify 26 new tumours as pilocytic astrocytoma, medulloblastoma or ependymoma. These spectra were subsequently combined with the original dataset to develop an optimised scheme from 53 tumours in total. RESULTS: Of the pilocytic astrocytomas, medulloblastomas and ependymomas, 65.4% were correctly assigned using the original tool. An optimized scheme was produced from the combined dataset correctly assigning 90.6%. Rare tumour types showed distinctive MR spectroscopy features. CONCLUSION: The original diagnostic tool gave modest accuracy when tested prospectively on multicentre data. Increasing the dataset provided a diagnostic tool based on MR spectroscopy peak height measurement with high levels of accuracy for multicentre data.


Asunto(s)
Neoplasias Cerebelosas/diagnóstico por imagen , Espectroscopía de Resonancia Magnética/métodos , Biomarcadores de Tumor/metabolismo , Neoplasias Cerebelosas/metabolismo , Niño , Diagnóstico Diferencial , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Estudios Prospectivos
15.
Magn Reson Med ; 77(1): 34-43, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26800478

RESUMEN

PURPOSE: Poorly characterized macromolecular (MM) and baseline artefacts are known to reduce metabolite quantitation accuracy in 1 H MR spectroscopic imaging (MRSI). Increasing echo time (TE) and improvements in MM analysis schemes have both been proposed as strategies to improve metabolite measurement reliability. In this study, the influence of TE and two MM analysis schemes on MRSI reproducibility are investigated. METHODS: An experimentally acquired baseline was collected using an inversion recovery sequence (TI = 750 ms) and incorporated into the analysis method. Intrasubject reproducibility of MRSI scans, acquired at 3 Tesla, was assessed using metabolite coefficients of variance (COVs) for both experimentally acquired and simulated MM analysis schemes. In addition, the reproducibility of TE = 35 ms, 80 ms, and 144 ms was evaluated. RESULTS: TE = 80 ms was the most reproducible for singlet metabolites with COVs < 6% for total N-acetyl-aspartate, total creatine, and total choline; however, moderate multiplet dephasing was observed. Analysis incorporating the experimental baseline achieved higher Glu and Glx reproducibility at TE = 35 ms, and showed improvements over the simulated baseline, with higher efficacy for poorer data. CONCLUSION: Overall, TE = 80 ms yielded the most reproducible singlet metabolite estimates. However, combined use of a short TE sequence and the experimental baseline may be preferred as a compromise between accuracy, multiplet dephasing, and T2 bias on metabolite estimates. Magn Reson Med 77:34-43, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Sustancias Macromoleculares/metabolismo , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Encéfalo/metabolismo , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/metabolismo , Humanos , Sustancias Macromoleculares/química , Reproducibilidad de los Resultados , Adulto Joven
16.
Magn Reson Med ; 77(6): 2114-2124, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27404900

RESUMEN

PURPOSE: Classification of pediatric brain tumors from 1 H-magnetic resonance spectroscopy (MRS) can aid diagnosis and management of brain tumors. However, varied incidence of the different tumor types leads to imbalanced class sizes and introduces difficulties in classifying rare tumor groups. This study assessed different imbalanced multiclass learning techniques and compared the use of complete spectra and quantified metabolite profiles for classification of three main childhood brain tumor types. METHODS: Single-voxel, Short echo time MRS data were collected from 90 patients with pilocytic astrocytoma (n = 42), medulloblastoma (n = 38), or ependymoma (n = 10). Both spectra and metabolite profiles were used to develop the learning algorithms. The borderline synthetic minority oversampling technique and AdaboostM1 were used to correct for the skewed distribution. Classifiers were trained using five different pattern recognition algorithms. RESULTS: Use of imbalanced learning techniques improved the balanced accuracy rate (BAR) of all classification methods (average BAR over all classification methods for spectra: oversampled data = 0.81, original = 0.63, P < 0.001; metabolite concentration: oversampled-data = 0.91, original = 0.75, P < 0.0001). Performance of all classifiers in discriminating ependymomas increased when oversampled data were used compared with original data for both complete spectra (F-measure P < 0.01) and metabolite profile (F-measure P < 0.001). CONCLUSION: Imbalanced learning techniques improve the classification accuracy of childhood brain tumors from MRS where group sizes differ and facilitate the inclusion of rarer tumor types into clinical decision support systems. Magn Reson Med 77:2114-2124, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Algoritmos , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Diagnóstico por Computador/métodos , Aprendizaje Automático , Espectroscopía de Protones por Resonancia Magnética/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
J Magn Reson Imaging ; 45(5): 1325-1334, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27545824

RESUMEN

PURPOSE: To investigate the robustness of constrained and simultaneous intravoxel incoherent motion (IVIM) fitting methods and the estimated IVIM parameters (D, D* and f) for applications in brain and low-perfused tissues. MATERIALS AND METHODS: Model data simulations relevant to brain and low-perfused tumor tissues were computed to assess the accuracy, relative bias, and reproducibility (CV%) of the fitting methods in estimating the IVIM parameters. The simulations were performed at a series of signal-to-noise ratio (SNR) levels to assess the influence of noise on the fitting. RESULTS: The estimated IVIM parameters from model simulations were found significantly different (P < 0.05) using simultaneous and constrained fitting methods at low SNR. Higher accuracy and reproducibility were achieved with the constrained fitting method. Using this method, the mean error (%) for the estimated IVIM parameters at a clinically relevant SNR = 40 were D 0.35, D* 41.0 and f 4.55 for the tumor model and D 1.87, D* 2.48, and f 7.49 for the gray matter model. The most robust parameters were the IVIM-D and IVIM-f. The IVIM-D* was increasingly overestimated at low perfusion. CONCLUSION: A constrained IVIM fitting method provides more accurate and reproducible IVIM parameters in low-perfused tissue compared with simultaneous fitting. LEVEL OF EVIDENCE: 3 J. MAGN. RESON. IMAGING 2017;45:1325-1334.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Niño , Simulación por Computador , Medios de Contraste , Difusión , Humanos , Movimiento (Física) , Distribución Normal , Perfusión , Reproducibilidad de los Resultados , Relación Señal-Ruido
18.
J Magn Reson Imaging ; 43(4): 981-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26514288

RESUMEN

PURPOSE: To investigate how arterial input functions (AIFs) vary with age in children and compare the use of individual and population AIFs for calculating gray matter CBV values. Quantitative measures of cerebral blood volume (CBV) using dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) require measurement of an AIF. AIFs are affected by numerous factors including patient age. Few data presenting AIFs in the pediatric population exists. MATERIALS AND METHODS: Twenty-two previously treated pediatric brain tumor patients (mean age, 6.3 years; range, 2.0-15.3 years) underwent DSC-MRI scans on a 3T MRI scanner over 36 visits. AIFs were measured in the middle cerebral artery. A functional form of an adult population AIF was fitted to each AIF to obtain parameters reflecting AIF shape. The relationship between parameters and age was assessed. Correlations between gray matter CBV values calculated using the resulting population and individual patient AIFs were explored. RESULTS: There was a large variation in individual patient AIFs but correlations between AIF shape and age were observed. The center (r = 0.596, P < 0.001) and width of the first-pass peak (r = 0.441, P = 0.007) were found to correlate significantly with age. Intrapatient coefficients of variation were significantly lower than interpatient values for all parameters (P < 0.001). Differences in CBV values calculated with an overall population and age-specific population AIF compared to those calculated with individual AIFs were 31.3% and 31.0%, respectively. CONCLUSION: Parameters describing AIF shape correlate with patient age in line with expected changes in cardiac output. In pediatric DSC-MRI studies individual patient AIFs are recommended.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Sustancia Gris/patología , Imagen por Resonancia Magnética , Adolescente , Determinación del Volumen Sanguíneo , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/patología , Niño , Preescolar , Sustancia Gris/diagnóstico por imagen , Humanos , Aumento de la Imagen/métodos , Lactante , Reproducibilidad de los Resultados
19.
Br J Cancer ; 113(8): 1216-24, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26348444

RESUMEN

BACKGROUND: Tumour classification, based on histopathology or molecular pathology, is of value to predict tumour behaviour and to select appropriate treatment. In retinoblastoma, pathology information is not available at diagnosis and only exists for enucleated tumours. Alternative methods of tumour classification, using noninvasive techniques such as magnetic resonance spectroscopy, are urgently required to guide treatment decisions at the time of diagnosis. METHODS: High-resolution magic-angle spinning magnetic resonance spectroscopy (HR-MAS MRS) was undertaken on enucleated retinoblastomas. Principal component analysis and cluster analysis of the HR-MAS MRS data was used to identify tumour subgroups. Individual metabolite concentrations were determined and were correlated with histopathological risk factors for each group. RESULTS: Multivariate analysis identified three metabolic subgroups of retinoblastoma, with the most discriminatory metabolites being taurine, hypotaurine, total-choline and creatine. Metabolite concentrations correlated with specific histopathological features: taurine was correlated with differentiation, total-choline and phosphocholine with retrolaminar optic nerve invasion, and total lipids with necrosis. CONCLUSIONS: We have demonstrated that a metabolite-based classification of retinoblastoma can be obtained using ex vivo magnetic resonance spectroscopy, and that the subgroups identified correlate with histopathological features. This result justifies future studies to validate the clinical relevance of these subgroups and highlights the potential of in vivo MRS as a noninvasive diagnostic tool for retinoblastoma patient stratification.


Asunto(s)
Metaboloma/fisiología , Retinoblastoma/metabolismo , Retinoblastoma/patología , Adolescente , Adulto , Anciano de 80 o más Años , Diferenciación Celular/fisiología , Niño , Colina/metabolismo , Creatina/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Fosforilcolina/metabolismo , Análisis de Componente Principal/métodos , Taurina/análogos & derivados , Taurina/metabolismo , Adulto Joven
20.
Magn Reson Med ; 73(6): 2081-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25046769

RESUMEN

PURPOSE: Accurate and fast (1) H MR spectroscopic imaging (MRSI) water reference scans are important for absolute quantification of metabolites. However, the additional acquisition time required often precludes the water reference quantitation method for MRSI studies. Sensitivity encoding (SENSE) is a successful MR technique developed to reduce scan time. This study quantitatively assesses the accuracy of SENSE for water reference MRSI data acquisition, compared with the more commonly used reduced resolution technique. METHODS: 2D MRSI water reference data were collected from a phantom and three volunteers at 3 Tesla for full acquisition (306 s); 2× reduced resolution (64 s) and SENSE R = 3 (56 s) scans. Water amplitudes were extracted using MRS quantitation software (TARQUIN). Intensity maps and Bland-Altman statistics were generated to assess the accuracy of the fast-MRSI techniques. RESULTS: The average mean and standard deviation of differences from the full acquisition were 2.1 ± 3.2% for SENSE and 10.3 ± 10.7% for the reduced resolution technique, demonstrating that SENSE acquisition is approximately three times more accurate than the reduced resolution technique. CONCLUSION: SENSE was shown to accurately reconstruct water reference data for the purposes of in vivo absolute metabolite quantification, offering significant improvement over the more commonly used reduced resolution technique.


Asunto(s)
Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Química Encefálica , Mapeo Encefálico , Colina/metabolismo , Creatina/metabolismo , Ácido Glutámico/metabolismo , Voluntarios Sanos , Humanos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA