Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 30(7): 4246-4256, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32191258

RESUMEN

The molecular processes underlying the aging-related decline in cognitive performance and memory observed in humans are poorly understood. Studies in rodents have shown a decrease in N-methyl-D-aspartate receptors (NMDARs) that contain the GluN2B subunit in aging synapses, and this decrease is correlated with impaired memory functions. However, the age-dependent contribution of GluN2B-containing receptors to synaptic transmission in human cortical synapses has not been previously studied. We investigated the synaptic contribution of GluN2A and GluN2B-containing NMDARs in adult human neurons using fresh nonpathological temporal cortical tissue resected during neurosurgical procedures. The tissue we obtained fulfilled quality criteria by the absence of inflammation markers and proteomic degradation. We show an age-dependent decline in the NMDA/AMPA receptor ratio in adult human temporal cortical synapses. We demonstrate that GluN2B-containing NMDA receptors contribute to synaptic responses in the adult human brain with a reduced contribution in older individuals. With previous evidence demonstrating the critical role of synaptic GluN2B in regulating synaptic strength and memory storage in mice, this progressive reduction of GluN2B in the human brain during aging may underlie a molecular mechanism in the age-related decline in cognitive abilities and memory observed in humans.


Asunto(s)
Envejecimiento/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Lóbulo Temporal/metabolismo , Adulto , Anciano , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores AMPA/metabolismo , Lóbulo Temporal/citología , Adulto Joven
2.
PLoS One ; 18(1): e0262792, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36701399

RESUMEN

Tau becomes abnormally hyper-phosphorylated and aggregated in tauopathies like Alzheimers disease (AD). As age is the greatest risk factor for developing AD, it is important to understand how tau protein itself, and the pathways implicated in its turnover, change during aging. We investigated age-related changes in total and phosphorylated tau in brain samples from two cohorts of cognitively normal individuals spanning 19-74 years, without overt neurodegeneration. One cohort utilised resected tissue and the other used post-mortem tissue. Total soluble tau levels declined with age in both cohorts. Phosphorylated tau was undetectable in the post-mortem tissue but was clearly evident in the resected tissue and did not undergo significant age-related change. To ascertain if the decline in soluble tau was correlated with age-related changes in autophagy, three markers of autophagy were tested but only two appeared to increase with age and the third was unchanged. This implies that in individuals who do not develop neurodegeneration, there is an age-related reduction in soluble tau which could potentially be due to age-related changes in autophagy. Thus, to explore how an age-related increase in autophagy might influence tau-mediated dysfunctions in vivo, autophagy was enhanced in a Drosophila model and all age-related tau phenotypes were significantly ameliorated. These data shed light on age-related physiological changes in proteins implicated in AD and highlights the need to study pathways that may be responsible for these changes. It also demonstrates the therapeutic potential of interventions that upregulate turnover of aggregate-prone proteins during aging.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Proteínas tau/metabolismo , Tauopatías/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Drosophila/metabolismo , Autofagia/genética , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA