RESUMEN
Viral infection triggers the activation of transcription factor IRF3, and its activity is precisely regulated for robust antiviral immune response and effective pathogen clearance. However, how full activation of IRF3 is achieved has not been well defined. Herein, we identified BLK as a key kinase that positively modulates IRF3-dependent signaling cascades and executes a pre-eminent antiviral effect. BLK deficiency attenuates RNA or DNA virus-induced ISRE activation, interferon production and the cellular antiviral response in human and murine cells, whereas overexpression of BLK has the opposite effects. BLK-deficient mice exhibit lower serum cytokine levels and higher lethality after VSV infection. Moreover, BLK deficiency impairs the secretion of downstream antiviral cytokines and promotes Senecavirus A (SVA) proliferation, thereby supporting SVA-induced oncolysis in an in vivo xenograft tumor model. Mechanistically, viral infection triggers BLK autophosphorylation at tyrosine 309. Subsequently, activated BLK directly binds and phosphorylates IRF3 at tyrosine 107, which further promotes TBK1-induced IRF3 S386 and S396 phosphorylation, facilitating sufficient IRF3 activation and downstream antiviral response. Collectively, our findings suggest that targeting BLK enhances viral clearance via specifically regulating IRF3 phosphorylation by a previously undefined mechanism.
Asunto(s)
Proteínas Serina-Treonina Quinasas , Virosis , Humanos , Animales , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factor 3 Regulador del Interferón/metabolismo , Procesamiento Proteico-Postraduccional , Citocinas/metabolismo , Inmunidad Innata , Familia-src Quinasas/metabolismoRESUMEN
Stomatal opening is largely promoted by light-activated plasma membrane-localized proton ATPases (PM H+-ATPases), while their closure is mainly modulated by abscisic acid (ABA) signaling during drought stress. It is unknown whether PM H+-ATPases participate in ABA-induced stomatal closure. We established that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) interacts with, phosphorylates and activates the major PM Arabidopsis H+-ATPase isoform 2 (AHA2). Detached leaves from aha2-6 single mutant Arabidopsis thaliana plants lost as much water as bak1-4 single and aha2-6 bak1-4 double mutants, with all three mutants losing more water than the wild-type (Columbia-0 [Col-0]). In agreement with these observations, aha2-6, bak1-4, and aha2-6 bak1-4 mutants were less sensitive to ABA-induced stomatal closure than Col-0, whereas the aha2-6 mutation did not affect ABA-inhibited stomatal opening under light conditions. ABA-activated BAK1 phosphorylated AHA2 at Ser-944 in its C-terminus and activated AHA2, leading to rapid H+ efflux, cytoplasmic alkalinization, and reactive oxygen species (ROS) accumulation, to initiate ABA signal transduction and stomatal closure. The phosphorylation-mimicking mutation AHA2S944D driven by its own promoter could largely compensate for the defective phenotypes of water loss, cytoplasmic alkalinization, and ROS accumulation in both aha2-6 and bak1-4 mutants. Our results uncover a crucial role of AHA2 in cytoplasmic alkalinization and ABA-induced stomatal closure during the plant's response to drought stress.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Mutación/genética , Fosforilación , Estomas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Agua/metabolismoRESUMEN
MAIN CONCLUSION: Six grape centromere-specific markers for cytogenetics were mined by combining genetic and immunological assays, and the possible evolution mechanism of centromeric repeats was analyzed. Centromeric histone proteins are functionally conserved; however, centromeric repetitive DNA sequences may represent considerable diversity in related species. Therefore, studying the characteristics and structure of grape centromere repeat sequences contributes to a deeper understanding of the evolutionary process of grape plants, including their origin and mechanisms of polyploidization. Plant centromeric regions are mainly composed of repetitive sequences, including SatDNA and transposable elements (TE). In this research, the characterization of centromere sequences in the whole genome of grapevine (Vitis vinifera L.) has been conducted. Five centromeric tandem repeat sequences (Vv1, Vv2, Vv5, Vv6, and Vv8) and one long terminal repeat (LTR) sequence Vv24 were isolated. These sequences had different centromeric distributions, which indicates that grape centromeric sequences may undergo rapid evolution. The existence of extrachromosomal circular DNA (eccDNA) and gene expression in CenH3 subdomain region may provide various potential mechanisms for the generation of new centromeric regions.
Asunto(s)
Vitis , Vitis/genética , Centrómero/genética , Citoplasma , Elementos Transponibles de ADN/genética , HistonasRESUMEN
Tungsten oxide (W O 3) has been widely used in hydrogen sensing due to its stable chemical properties and high oxygen vacancy diffusion coefficient. However, the response of pure W O 3 to hydrogen is slow, and doping is an effective way to improve the hydrogen sensing performance of W O 3 materials. In this paper, W O 3/P t/P E G/S i O 2 porous film was prepared by the sol-gel method using tungsten powder, H 2 O 2 and C 2 H 5 O H as precursors, polyethylene glycol (PEG) as the pore-forming agent, and tetraethyl orthosilicate (TEOS) as the S i O 2 source material. The sensing properties of the W O 3 composite for hydrogen were characterized by a transmission optical fiber hydrogen sensing system made at home. The process parameters such as water bath time, aging time, W:PEG ratio, and W:TEOS ratio were optimized to improve the sensitivity and response time of the sensing film. The experimental results indicate that the sensitivity is 15.68%, the average response time is 45 s, and the repeatability is up to 98.74% in 16 consecutive tests. The linearity index R 2 is 0.9946 within the hydrogen concentration range of 5000 ppm to 50,000 ppm. The film responds only to H 2 when the concentration of interfering gases (C H 4, CO, C O 2) is 2000 ppm. The hydrogen sensing performance of the optimized film is significantly improved compared with that of the undoped film.
RESUMEN
A growing number of studies indicate that mitochondrial dysfunction serves as a pathological mechanism for periodontitis. Therefore, this two-sample Mendelian randomization (MR) study was carried out to explore the causal associations between mitochondrial biological function and periodontitis, because the specific nature of this causal relationship remains inconclusive in existing MR studies. Inverse variance weighting, Mendelian randomization-Egger, weighted mode, simple mode, and weighted median analyses were performed to assess the causal relationships between the exposure factors and periodontitis. The results of the present study revealed a causal association between periodontitis and medium-chain specific acyl-CoA dehydrogenase (MCAD), malonyl-CoA decarboxylase (MLYCD), glutaredoxin 2 (Grx2), oligoribonuclease (ORN), and pyruvate carboxylase (PC). Notably, MCAD and MLYCD are causally linked to periodontitis, and serve as protective factors. However, Grx2, ORN, and PC function as risk factors for periodontitis. Our study established a causal relationship between mitochondrial biological function and periodontitis, and such insights may provide a promising approach for treating periodontitis via mitochondrial regulation.
Asunto(s)
Análisis de la Aleatorización Mendeliana , Mitocondrias , Periodontitis , Humanos , Periodontitis/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Factores de RiesgoRESUMEN
Potassium (K+) is one of the essential macronutrients for plant growth and development. However, the available K+ concentration in soil is relatively low. Plant roots can perceive low K+ (LK) stress, then enhance high-affinity K+ uptake by activating H+-ATPases in root cells, but the mechanisms are still unclear. Here, we identified the receptor-like protein kinase Brassinosteroid Insensitive 1-Associated Receptor Kinase 1 (BAK1) that is involved in LK response by regulating the Arabidopsis (Arabidopsis thaliana) plasma membrane H+-ATPase isoform 2 (AHA2). The bak1 mutant showed leaf chlorosis phenotype and reduced K+ content under LK conditions, which was due to the decline of K+ uptake capacity. BAK1 could directly interact with the AHA2 C terminus and phosphorylate T858 and T881, by which the H+ pump activity of AHA2 was enhanced. The bak1 aha2 double mutant also displayed a leaf chlorosis phenotype that was similar to their single mutants. The constitutively activated form AHA2Δ98 and phosphorylation-mimic form AHA2T858D or AHA2T881D could complement the LK sensitive phenotypes of both aha2 and bak1 mutants. Together, our data demonstrate that BAK1 phosphorylates AHA2 and enhances its activity, which subsequently promotes K+ uptake under LK conditions.
Asunto(s)
Anemia Hipocrómica , Proteínas de Arabidopsis , Arabidopsis , Anemia Hipocrómica/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Potasio/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Bombas de Protones/metabolismo , ATPasas de Translocación de Protón/metabolismoRESUMEN
Organic Fenton-like catalysis has been recently developed for water purification, but redox-active compounds have to be ex situ added as oxidant activators, causing secondary pollution problem. Electrochemical oxidation is widely used for pollutant degradation, but suffers from severe electrode fouling caused by high-resistance polymeric intermediates. Herein, we develop an in situ organic Fenton-like catalysis by using the redox-active polymeric intermediates, e.g., benzoquinone, hydroquinone, and quinhydrone, generated in electrochemical pollutant oxidation as H2O2 activators. By taking phenol as a target pollutant, we demonstrate that the in situ organic Fenton-like catalysis not only improves pollutant degradation, but also refreshes working electrode with a better catalytic stability. Both 1O2 nonradical and ·OH radical are generated in the anodic phenol conversion in the in situ organic Fenton-like catalysis. Our findings might provide a new opportunity to develop a simple, efficient, and cost-effective strategy for electrochemical water purification.
Asunto(s)
Electroquímica , Peróxido de Hidrógeno/química , Hierro/química , Compuestos Orgánicos/química , Polímeros/química , Purificación del Agua , Catálisis , Electrodos , Fluorescencia , Radical Hidroxilo/análisis , Fenoles/química , Superóxidos/análisisRESUMEN
Iron overload is a risk factor for postmenopausal osteoporosis (PMOP) and lowering iron levels to regulate the labile plasma iron is the preferred therapy. Icariin (ICA), baohuoside I (BHS) and icaritin (ICT) are three flavonoids obtained from Epimedii Folium that are efficient in facilitating osteogenesis. In this study, an active flavonoid with dual effects of reversing iron overload and promoting osteogenesis was screened based on pharmacokinetics, iron complexation properties and the potential to downregulate iron overload, reversing PMOP. As a result, the in vivo absorption of three compounds was ICA > ICT > BHS, while the exposure in muscle and bone was BHS > ICT > ICA. In vitro complexation showed that only ICT complexed with Fe (III) at a 1:1 ratio on 3-OH and the ICT-Fe (III) complex (m/z 424.3750) was identified by UPLC-Q-TOF-MS. In vivo dynamic detection also showed that the concentration of ICT-Fe (III) complexes varied with the concentration of ICT in plasma. The behavioral blunting and bone loss in zebrafish induced by Fe (III) were significantly reversed by ICT in a dose-dependent manner. Pharmacokinetic-pharmacodynamic analysis showed that ICT was negatively correlated with serum ferritin and positively correlated with osteogenic markers including alkaline phosphatase, osteocalcin and osteoprotegerin. Bone loss in ovariectomized rats was significantly altered after ICT intervention, with reduced serum ferritin levels and improved osteogenic marker levels. These results demonstrated that ICT had favorable musculoskeletal penetration and iron complexation capability to shrink labile plasma iron, showing superior performance in anti-PMOP through the dual effects of reversing iron overload and promoting osteogenesis.
Asunto(s)
Sobrecarga de Hierro , Osteogénesis , Ratas , Animales , Osteogénesis/fisiología , Pez Cebra , Hierro , Ferritinas/farmacología , Flavonoides/farmacologíaRESUMEN
Grapes are widely cultivated around the world and their quality has distinct regional characteristics. In this study, the qualitative characteristics of the 'Cabernet Sauvignon' grape variety in seven regions, from half-véraison to maturity, were analyzed comprehensively at physiological and transcriptional levels. The results indicated that the quality traits of 'Cabernet Sauvignon' grapes in different regions were significantly different with obvious regionality. Total phenols, anthocyanins, and titratable acids were the main factors of the regionality of berry quality, which were very sensitive to changes in the environment. It should be noted that the changes in titrating acids and total anthocyanin of berries vary greatly from half-véraison to maturity between regions. Moreover, the transcriptional analysis showed that the co-expressed genes between regions characterized the core transcriptome of berry development, while the unique genes of each region reflected the regionality of berries. The differentially expressed genes (DEGs) between half-véraison and maturity can be used to demonstrate that the environment of the regions could promote or inhibit gene expression. The functional enrichment suggested that these DEGs help to understand the interpretation of the plasticity of the quality composition of grapes according to the environment. Taken together, the information generated by this study could contribute to the development of viticultural practices aimed at making better use of native varieties for the development of wines with regional characteristics.
Asunto(s)
Vitis , Vino , Vitis/genética , Antocianinas/metabolismo , Transcriptoma , Frutas/metabolismoRESUMEN
BACKGROUND: Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) represent an effective and promising strategy for periodontitis, although studies remain pre-clinical. Herein, a meta-analysis was conducted to assess the efficacy of MSC-EVs in animal models of periodontitis. METHODS: The PubMed, Web of Science, and Embase electronic databases were searched up to Dec 2022 to retrieve preclinical studies examining the use of MSC-EVs for periodontitis treatment. Meta-analyses and sub-group analyses were performed to assess the effect of MSC-EVs on Bone Volume/Total Volume (BV/TV) or the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) in pre-clinical animal models of periodontitis. RESULTS: 11 studies published from Mar 2019 to Oct 2022 met the inclusion criteria. Overall, MSC-EVs contributed to periodontal bone regeneration in the inflammatory bone loss area due to periodontitis, as represented by a weighted mean difference (WMD) of 14.07% (95% CI = 6.73, 21.41%, p < 0.001) for BV/TV and a WMD of -0.12 mm (95% CI= -0.14, -0.11 mm, p < 0.001) for CEJ-ABC. However, sub-analysis suggested that there was no significant difference in CEJ-ABC between studies with bioactive scaffolds and studies without bioactive scaffolds (p = 0.60). CONCLUSIONS: The present study suggests that MSC-EVs may represent an attractive therapy for the treatment of inflammatory bone loss within periodontitis.
Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Periodontitis , Animales , Regeneración Ósea , Modelos Animales de Enfermedad , Periodontitis/terapiaRESUMEN
Seedlessness is one of the important quality and economic traits favored by grapevine consumers, which are mainly affected by phytohormones, especially gibberellin (GA). GA is widely utilized in seedless berry production and could effectively induce grape seed embryo abortion. However, the molecular mechanism underlying this process, like the role of RNA silencing in the biosynthesis pathway of GA remains elusive. Here, Gibberellin 3-ß dioxygenase2 (GA3ox2) as the last key enzyme in GA biosynthesis was predicated as a potential target gene for miR3633a, and two of them were identified as a GA response in grape berries. We also analyzed the promoter regions of genes encoding GA biosynthesis and found the hormone-responsive elements to regulate grape growth and development. The cleavage interaction between VvmiR3633a and VvGA3ox2 was validated by RLM-RACE and the transient co-transformation technique in tobacco in vivo. Interestingly, during GA-induced grape seed embryo abortion, exogenous GA promoted the expression of VvmiR3633a, thereby mainly repressing the level of VvGA3ox2 in seed embryos. We also observed a negative correlation between down-regulated VvGA20ox2/VvGA3ox2 and up-regulated VvGA2ox3/VvGA2ox1, of which GA inactivation was greater than GA synthesis, inhibited active GA content, accompanied by the reduction of VvSOD and VvCAT expression levels and enzymatic activities. These series of changes might be the main causes of grape seed embryo abortion. In conclusion, we have preliminarily drawn a schematic mode of GA-mediated VvmiR3633a and related genes regulatory network during grape seed abortion induced by exogenous GA. Our findings provide novel insights into the GA-responsive roles of the VvmiR3633a-VvGA3ox2 module in the modulation of grape seed-embryo abortion, which has implications for the molecular breeding of high-quality seedless grape berries.
Asunto(s)
Giberelinas , Vitis , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Giberelinas/farmacología , Proteínas de Plantas/metabolismo , Semillas , Vitis/metabolismoRESUMEN
The mechanisms that balance plant growth and stress responses are poorly understood, but they appear to involve abscisic acid (ABA) signaling mediated by protein kinases. Here, to explore these mechanisms, we examined the responses of Arabidopsis thaliana protein kinase mutants to ABA treatment. We found that mutants of BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) were hypersensitive to the effects of ABA on both seed germination and primary root growth. The kinase OPEN STOMATA 1 (OST1) was more highly activated by ABA in bak1 mutant than the wild type. BAK1 was not activated by ABA treatment in the dominant negative mutant abi1-1 or the pyr1 pyl4 pyl5 pyl8 quadruple mutant, but it was more highly activated by this treatment in the abi1-2 abi2-2 hab1-1 loss-of-function triple mutant than the wild type. BAK1 phosphorylates OST1 T146 and inhibits its activity. Genetic analyses suggested that BAK1 acts at or upstream of core components in the ABA signaling pathway, including PYLs, PP2Cs, and SnRK2s, during seed germination and primary root growth. Although the upstream brassinosteroid (BR) signaling components BAK1 and BR INSENSITIVE 1 (BRI1) positively regulate ABA-induced stomatal closure, mutations affecting downstream components of BR signaling, including BRASSINOSTEROID-SIGNALING KINASEs (BSKs) and BRASSINOSTEROID-INSENSITIVE 2 (BIN2), did not affect ABA-mediated stomatal movement. Thus, our study uncovered an important role of BAK1 in negatively regulating ABA signaling during seed germination and primary root growth, but positively modulating ABA-induced stomatal closure, thus optimizing the plant growth under drought stress.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Estomas de Plantas/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
Prostate cancer (PCa) is one of the most common malignancies in aged males, ranking the second in the incidence of malignant tumors in men. Early diagnosis is essential, as advanced PCa is quite difficult to be managed, especially when it becomes castration-resistant or neuroendocrine PCa. Currently, the diagnosis of PCa is often based on pathology by prostate biopsy. Many recent studies focus on the impact of different biopsy methods on the diagnosis of the malignancy, but no consensus has been reached hitherto. This review summarizes various prostate biopsy methods and their latest studies.
Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Anciano , Próstata/patología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Biopsia , Antígeno Prostático EspecíficoRESUMEN
Founder wheat lines have played key role in Chinese wheat improvement. Wheat-Dasypyrum villosum translocation T6VS·6AL has been widely used in wheat breeding in recent years due to its high level of powdery mildew resistance and other beneficial genes. Reference oligo-nucleotide multiplex probe (ONMP)-FISH karyotypes of six T6VS·6AL donor lines were developed and used for characterizing 32 derivative cultivars and lines. T6VS·6AL was present in 27 cultivar/lines with 20 from southern China. Next, ONMP-FISH was used to study chromosome constitution of randomly collected wheat cultivars and advanced breeding lines from southern and northern regions of China: 123 lines from the regional test plots of southern China and 110 from northern China. In southern China, T6VS·6AL (35.8%) was the most predominant variation, while T1RS·1BL (27.3%) was the most predominant in northern China. The pericentric inversion perInv 6B derived from its founder wheat Funo and Abbondaza was the second most predominant chromosome variant in both regions. Other chromosome variants were present in very low frequencies. Additionally, 167 polymorphic chromosome types were identified. Based on these variations, 271 cultivars and lines were clustered into three groups, including southern, northern, and mixed groups that contained wheat from both regions. Different dominant chromosome variations were seen, indicating chromosome differentiation in the three groups of wheat. The clearly identified wheat lines with T6VS·6AL in different backgrounds and oligonucleotide probe set will facilitate their utilization in wheat breeding and in identifying other beneficial traits that may be linked to this translocation. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01206-3.
RESUMEN
STATEMENT OF PROBLEM: Tooth preparations for ceramic crowns require precision and accuracy, which may be influenced by the choice of dental handpiece. However, comparisons of the accuracy of tooth preparations made with traditional air-turbine handpieces and electric handpieces are lacking. PURPOSE: The purpose of this in vitro study was to evaluate operator preferences and tooth preparation performance by using electric and air-turbine handpieces with self-reported preferences, sound levels, surface roughness, and the fit of the crown produced. MATERIAL AND METHODS: Twenty dentists were asked to use the air-turbine or the electric handpiece. Feedback on the noise, weight, feel of grip, flexibility, and tooth preparation in general was scored according to a visual analog scale (VAS). Additionally, the dentists were asked to complete a questionnaire on their handpiece preference. The noise of the 2 handpieces was measured by using a precision sound level meter. The surface roughness of 10 teeth was measured by using a profilometer. The other 18 teeth were prepared to measure the marginal and internal fit of ceramic crowns by the replica technique. The VAS scores of operator preferences were analyzed with the Wilcoxon signed ranks test. Decibel levels were analyzed with the Mann-Whitney U test. The McNemar test was used to compare the ratio of preferred handpiece. The surface roughness and marginal and internal fit were analyzed with the independent t test to determine significant differences (all α=.05). RESULTS: The electric handpiece was heavier, had a poorer grip feel, was less flexible (P<.001), produced lower noise and better feeling of the tooth preparation in general (P<.001), and was preferred in the finishing stage for its greater smoothness (P<.05). The noise produced by the electric handpiece was lower during both idling and tooth preparation at 15-cm, 30-cm, and 45-cm distances (P<.01). The electric handpiece produced surface roughness values (Sa) similar to those of the air-turbine handpiece (P>.05). No significant differences were noted for the marginal and internal crown fit between the air-turbine handpiece and electric handpiece groups (P>.05). CONCLUSIONS: Despite its heavier weight, poorer grip feel, and less flexibility, the electric handpiece emitted lower noise, produced better feeling of the tooth preparation in general, and was preferred in the finishing step of tooth preparation for its greater smoothness than the air-turbine handpiece. The surface roughness of the prepared teeth and the crown fit between the tooth and ceramic crown were not affected by the air-turbine or electric handpiece.
Asunto(s)
Equipo Dental de Alta Velocidad , Diente , Coronas , Porcelana Dental , Humanos , Preparación del DienteRESUMEN
Photochemical oxidation is able to effectively regenerate the fouled electrode in electrochemical pollutant monitoring, while its regeneration capacity is limited by the surface-bound hydroxyl radical speciation with low activity and mobility, which is attributed to the dissociated water adsorption on hydrophilic metal oxides. In this work, fluorine-terminated {001}-exposed TiO2 single crystals (F-TiO2) are rationally designed to construct an Au-based electrochemical sensor (Au/F-TiO2) for dopamine (DA) detection in different matrices. The Au/F-TiO2 sensor exhibits an efficient and stable detection capacity in both environmental and biological samples. A superior photochemical regeneration capacity is obtained on the Au/F-TiO2 electrode with much reduced matrix effects under UV irradiation. Spectral observation, crystallographic analysis, pollutant degradation performance, radical inhibition, and surface enhanced Raman scattering tests reveal that both the fluorine-terminated surface chemical features and the bulk-free radical speciation are mainly responsible for the superior photochemical regeneration capacity of the Au/F-TiO2 electrode. Even for the real biological samples, a stable electrochemical DA detection is also achieved on the Au/F-TiO2 sensor. Our work establishes a new approach to refine electrochemical sensors for stable monitoring and provides a robust photoactive electrode substrate with high efficiency and low cost for practical applications.
Asunto(s)
Dopaminérgicos/química , Dopamina/química , Técnicas Electroquímicas/métodos , Flúor/química , Titanio/química , Electrodos , Procesos FotoquímicosRESUMEN
BACKGROUND The aim of this study was to evaluate the prevalence of inflammation and bone destruction of hand joints in rhupus patients through ultrasound examination. MATERIAL AND METHODS Ten rhupus patients and 33 systemic lupus erythematosus (SLE) patients with hand arthropathy were recruited in this single-center study, and the clinical features and ultrasound manifestations of these patients were analyzed. RESULTS We discovered that rhupus patients were older (47.31±4.35 years vs. 38.58±2.50 years, P=0.040), had longer duration of disease (median 72 months vs. median 12 months, P=0.040), had a higher positive rate (70% vs. 10.71%, P<0.001), and had higher titers of anti-CCP antibody (42.633±14.520 vs. 2.121±0.970, P<0.001) than SLE patients with arthropathy. More importantly, the prevalence rates of synovial hyperplasia (90% vs. 42.42%, P=0.008), synovitis (90% vs. 18.18%, P<0.001), synovial hyperplasia (70% vs. 10.71%, P<0.001), and bone destruction (70% vs. 6.06%, P<0.001) were higher in rhupus patients than in SLE patients with arthropathy. CONCLUSIONS Rhupus patients are more prone to develop synovitis, synovial hyperplasia, and bone destruction. Therefore, more attention should be paid to protection of the joints in rhupus patients.
Asunto(s)
Artritis Reumatoide/diagnóstico por imagen , Articulaciones de la Mano/diagnóstico por imagen , Inflamación/diagnóstico por imagen , Lupus Eritematoso Sistémico/diagnóstico por imagen , Articulación de la Muñeca/diagnóstico por imagen , Adulto , Artritis Reumatoide/patología , Femenino , Articulaciones de la Mano/patología , Humanos , Inflamación/patología , Lupus Eritematoso Sistémico/patología , Masculino , Persona de Mediana Edad , Prevalencia , Estudios Retrospectivos , Ultrasonografía Doppler , Articulación de la Muñeca/patologíaRESUMEN
The electrode is the key in electrochemical process for water and wastewater treatment. Many nonstoichiometric metal oxides are active electrode materials but have poor stability under strong anodic polarization due to their susceptible nature of the oxygen vacancies on surface and subsurface as defective reactive sites. In this work, a novel photochemical protecting strategy is proposed to stabilize the defective reactive sites on the TiO2- x surface and subsurface for long-term anodic oxidation of pollutants. With this strategy, a novel photoassisted electrochemical system at low anodic bias is further constructed. Such a system exhibits a high protecting capacity at a low operation cost for electrochemical degradation of bisphenol A (BPA), a typical persistent organic pollutant. Its excellent photochemical protecting capacity is found to be mainly attributed to the mild non-band-gap excitation pathways on the defective TiO2- x electrode under both visible-light irradiation and moderate anodic polarization. Under real sunlight irradiation, a 20 run cyclic test for BPA degradation demonstrates the excellent performance and stability of the constructed system at low bias without significant oxygen evolution. Our work provides a new opportunity to utilize the defective and reactive TiO2- x for efficient, stable, and cost-effective electrochemical water treatment with the aid of its photo- and electrochemical bifunctional properties.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Dominio Catalítico , Titanio , Aguas ResidualesRESUMEN
Noble metals, nanostructured carbon, and their hybrids are widely used for electrochemical detection of persistent organic pollutants. However, despite of the rapid detection process and high accuracy, these materials generally suffer from high costs, metallic impurity, heterogeneity, irreversible adsorption and poor sensitivity. Herein, the high-energy {001}-exposed TiO2 single crystals with specific inorganic-framework molecular recognition ability was prepared as the electrode material to detect bisphenol A (BPA), a typical and widely present organic pollutant in the environment. The oxidation peak current was linearly correlated to the BPA concentration from 10.0 nM to 20.0 µM ( R2 = 0.9987), with a low detection limit of 3.0 nM (S/N = 3). Furthermore, it exhibited excellent discriminating ability, high anti-interference capacity, and good long-term stability. Its good performance for BPA detection in real environmental samples, including tap water, lake and river waters, domestic wastewater, and municipal sludge, was also demonstrated. This work extends the applications of TiO2 semiconductor and suggests that this material could be used as a highly active, stable, low-cost, and environmentally benign electrode material for electrochemical sensing.
Asunto(s)
Compuestos de Bencidrilo/análisis , Técnicas Electroquímicas/métodos , Fenoles/análisis , Titanio/química , Contaminantes Químicos del Agua/análisis , Conductividad Eléctrica , Técnicas Electroquímicas/instrumentación , Electrodos , Límite de Detección , Impresión Molecular/métodos , Aguas del Alcantarillado/análisisRESUMEN
Electrochemical degradation of refractory pollutants at low bias before oxygen evolution exhibits high current efficiency and low energy consumption, but its severe electrode fouling largely limits practical applications. In this work, a new antifouling strategy was developed and validated for electrochemical pollutant degradation by photochemical oxidation on facet-tailored {001}-exposed TiO2 single crystals. Electrode fouling from anodic polymers at a low bias was greatly relieved by the free ·OH-mediated photocatalysis under UV irradiation, thus efficient and stable degradation of bisphenol A, a typical environmental endocrine disrupter, and treatment of landfill leachate were accomplished without remarkable oxygen evolution in synergistic photoassisted electrochemical system. Electrochemical and spectroscopic measurements indicated a clean electrode surface during cyclic pollutant degradation. Such a photochemical antifouling strategy for low-bias anodic pollutants degradation was mainly attributed to the improved electric conductivity and excellent electrochemical and photochemical activities of tailored TiO2 anodic material, whose unique properties originated from the favorable surface atomic and electronic structures of high-energy {001} polar facet and single-crystalline structure. Our work opens up a brand new approach to develop catalytic systems for efficient degradation of refractory contaminants in water and wastewater.