Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 139(4): 584-596, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34525179

RESUMEN

Acute myeloid leukemia (AML) is characterized by the presence of leukemia stem cells (LSCs), and failure to fully eradicate this population contributes to disease persistence/relapse. Prior studies have characterized metabolic vulnerabilities of LSCs, which demonstrate preferential reliance on oxidative phosphorylation (OXPHOS) for energy metabolism and survival. In the present study, using both genetic and pharmacologic strategies in primary human AML specimens, we show that signal transducer and activator of transcription 3 (STAT3) mediates OXPHOS in LSCs. STAT3 regulates AML-specific expression of MYC, which in turn controls transcription of the neutral amino acid transporter gene SLC1A5. We show that genetic inhibition of MYC or SLC1A5 acts to phenocopy the impairment of OXPHOS observed with STAT3 inhibition, thereby establishing this axis as a regulatory mechanism linking STAT3 to energy metabolism. Inhibition of SLC1A5 reduces intracellular levels of glutamine, glutathione, and multiple tricarboxylic acid (TCA) cycle metabolites, leading to reduced TCA cycle activity and inhibition of OXPHOS. Based on these findings, we used a novel small molecule STAT3 inhibitor, which binds STAT3 and disrupts STAT3-DNA, to evaluate the biological role of STAT3. We show that STAT3 inhibition selectively leads to cell death in AML stem and progenitor cells derived from newly diagnosed patients and patients who have experienced relapse while sparing normal hematopoietic cells. Together, these findings establish a STAT3-mediated mechanism that controls energy metabolism and survival in primitive AML cells.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/metabolismo , Leucemia Mieloide Aguda/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Supervivencia Celular , Humanos , Células Madre Neoplásicas/citología , Fosforilación Oxidativa , Células Tumorales Cultivadas
2.
Haematologica ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934082

RESUMEN

The treatment of blast phase chronic myeloid leukemia (bpCML) remains a challenge due at least in part to drug resistance of leukemia stem cells (LSCs). Recent clinical evidence suggests that the BCL-2 inhibitor venetoclax in combination with ABL-targeting tyrosine kinase inhibitors (TKIs) can eradicate bpCML LSCs. In this report, we employed preclinical models of bpCML to investigate the efficacy and underlying mechanism of LSC-targeting with venetoclax/TKI combinations. Transcriptional analysis of LSCs exposed to venetoclax and dasatinib revealed upregulation of genes involved in lysosomal biology, in particular lysosomal acid lipase A (LIPA), a regulator of free fatty acids. Metabolomic analysis confirmed increased levels of free fatty acids in response to venetoclax/dasatinib. Pre-treatment of leukemia cells with bafilomycin, a specific lysosome inhibitor, or genetic perturbation of LIPA, resulted in increased sensitivity of leukemia cells toward venetoclax/dasatinib, implicating LIPA in treatment resistance. Importantly, venetoclax/dasatinib treatment does not affect normal stem cell function, suggestive of a leukemia-specific response. These results demonstrate that venetoclax/dasatinib is an LSCselective regimen in bpCML and that disrupting LIPA and fatty acid transport enhances venetoclax/dasatinib response in targeting LSCs, providing a rationale for exploring lysosomal disruption as an adjunct therapeutic strategy to prolong disease remission.

3.
Haematologica ; 108(10): 2616-2625, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37051756

RESUMEN

Venetoclax+azacitidine is the standard of care for newly-diagnosed patients with acute myeloid leukemia (AML) for whom intensive chemotherapy is inappropriate. Efforts to optimize this regimen are necessary. We designed a clinical trial to investigate two hypotheses: i) higher doses of venetoclax are tolerable and more effective, and ii) azacitidine can be discontinued after deep remissions. Forty-two newly diagnosed AML patients were enrolled in the investigator-initiated High Dose Discontinuation Azacitidine+Venetoclax (HiDDAV) Study (clinicaltrials gov. Identifier: NCT03466294). Patients received one to three "induction" cycles of venetoclax 600 mg daily with azacitidine. Responders received MRD-positive or MRDnegative "maintenance" arms: azacitidine with 400 mg venetoclax or 400 mg venetoclax alone, respectively. The toxicity profile of HiDDAV was similar to 400 mg venetoclax. The overall response rate was 66.7%; the duration of response (DOR), event-free survival (EFS) and overall survival were 12.9, 7.8 and 9.8 months, respectively. The MRD negativity rate was 64.3% by flow cytometry and 25.0% when also measured by droplet digital polymerase chain recation. MRD-negative patients by flow cytometry had improved DOR and EFS; more stringent measures of MRD negativity were not associated with improved OS, DOR or EFS. Using MRD to guide azacitidine discontinuation did not lead to improved DOR, EFS or OS compared to patients who discontinued azacitidine without MRD guidance. Within the context of this study design, venetoclax doses >400 mg with azacitidine were well tolerated but not associated with discernible clinical improvement, and MRD may not assist in recommendations to discontinue azacitidine. Other strategies to optimize, and for some patients, de-intensify, venetoclax+azacitidine regimens are needed.


Asunto(s)
Azacitidina , Leucemia Mieloide Aguda , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Neoplasia Residual/tratamiento farmacológico
4.
Blood ; 134(4): 389-394, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31101624

RESUMEN

We have previously demonstrated that oxidative phosphorylation is required for the survival of human leukemia stem cells (LSCs) from patients with acute myeloid leukemia (AML). More recently, we demonstrated that LSCs in patients with de novo AML rely on amino acid metabolism to drive oxidative phosphorylation. Notably, although overall levels of amino acids contribute to LSC energy metabolism, our current findings suggest that cysteine may be of particular importance for LSC survival. We demonstrate that exogenous cysteine is metabolized exclusively to glutathione. Upon cysteine depletion, glutathione synthesis is impaired, leading to reduced glutathionylation of succinate dehydrogenase A (SDHA), a key component of electron transport chain complex (ETC) II. Loss of SDHA glutathionylation impairs ETC II activity, thereby inhibiting oxidative phosphorylation, reducing production of ATP, and leading to LSC death. Given the role of cysteine in driving LSC energy production, we tested cysteine depletion as a potential therapeutic strategy. Using a novel cysteine-degrading enzyme, we demonstrate selective eradication of LSCs, with no detectable effect on normal hematopoietic stem/progenitor cells. Together, these findings indicate that LSCs are aberrantly reliant on cysteine to sustain energy metabolism, and that targeting this axis may represent a useful therapeutic strategy.


Asunto(s)
Cisteína/metabolismo , Complejo II de Transporte de Electrones/antagonistas & inhibidores , Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/metabolismo , Adenosina Trifosfato/metabolismo , Biomarcadores , Metabolismo Energético , Glutatión/metabolismo , Humanos , Oxidación-Reducción , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo
5.
Nature ; 511(7507): 90-3, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24870236

RESUMEN

Drug resistance is a major hurdle in oncology. Responses of acute myeloid leukaemia (AML) patients to cytarabine (Ara-C)-based therapies are often short lived with a median overall survival of months. Therapies are under development to improve outcomes and include targeting the eukaryotic translation initiation factor (eIF4E) with its inhibitor ribavirin. In a Phase II clinical trial in poor prognosis AML, ribavirin monotherapy yielded promising responses including remissions; however, all patients relapsed. Here we identify a novel form of drug resistance to ribavirin and Ara-C. We observe that the sonic hedgehog transcription factor glioma-associated protein 1 (GLI1) and the UDP glucuronosyltransferase (UGT1A) family of enzymes are elevated in resistant cells. UGT1As add glucuronic acid to many drugs, modifying their activity in diverse tissues. GLI1 alone is sufficient to drive UGT1A-dependent glucuronidation of ribavirin and Ara-C, and thus drug resistance. Resistance is overcome by genetic or pharmacological inhibition of GLI1, revealing a potential strategy to overcome drug resistance in some patients.


Asunto(s)
Resistencia a Antineoplásicos , Ácido Glucurónico/metabolismo , Glucuronosiltransferasa/metabolismo , Proteínas Hedgehog/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Citarabina/metabolismo , Citarabina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Eliminación de Gen , Glucuronosiltransferasa/biosíntesis , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/patología , Ribavirina/metabolismo , Ribavirina/farmacología , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Proteína con Dedos de Zinc GLI1
6.
J Autoimmun ; 102: 77-88, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31036429

RESUMEN

Toll-like receptor 4 (TLR4) play a key role in activating the innate immune system during pathogen recognition. In the pathogenesis of multiple sclerosis (MS), activated TLR4 together with myeloid differentiation primary response gene 88 (MyD88) produce an inflammatory microenvironment that promotes the differentiation of microglia into the M1 phenotype, who plays a key role in the pathogenesis of MS. Interleukin-1 receptor-associated kinase (IRAK)-M is specifically expressed in microglia in central nervous system (CNS) and act as a negative regulator of TLR4-MyD88 signaling pathway. Moreover, previous studies have shown that IRAK-M promotes the differentiation of type 2 microglia; however, its role in MS has not been explored. In the present study, we demonstrated that IRAK-M expression is elevated during EAE, and IRAK-M-/- mice significantly accelerated course and increased severity of disease, accompanied by a visible increase of the M1 microglia infiltrated. In conclusion, these data indicates that IRAK-M significantly improves EAE onset through down-regulation of the TLR4-MyD88 signaling pathway, which finally leads to differentiation of M2 phenotype in the microglia. Our study suggests that IRAK-M may be a potential therapeutic target for the treatment of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/patología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Microglía/citología , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Diferenciación Celular/inmunología , Dependovirus/genética , Regulación hacia Abajo , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Quinasas Asociadas a Receptores de Interleucina-1/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/inmunología , Células TH1/inmunología , Células Th17/inmunología
7.
Cytokine ; 111: 140-145, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30142535

RESUMEN

Syndecan-1 (SDC-1) is a transmembrane member that has a profound influence on the resolution of inflammation. Soluble syndecan-1 (sSDC-1) levels have been shown to increase in many inflammatory diseases. However, it remains unknown whether sSDC-1 concentration is elevated in neuromyelitis optica (NMO) and multiple sclerosis (MS) patients. The aims of this pilot study were to investigate the relationship between sSDC-1 and disease severity in NMO and MS and whether sSDC-1 has potential as an effective marker for disease severity. We measured sSDC-1 concentrations by using an enzyme-linked immunosorbent assay (ELISA). NMO patients had significantly higher CSF sSDC-1 levels than MS patients or controls. We also found a positive correlation between the increased CSF sSDC-1 levels and increased severity in NMO disease, but not in MS. In NMO, CSF sSDC-1 concentrations were positively correlated with CSF interleukin (IL)-6, IL-8 and IL-17. Overall, we showed levels of CSF sSDC-1 were higher in NMO patients and had a positive relationship with disease severity of NMO but not with MS. CSF sSDC-1 may be an effective marker of NMO disease severity.


Asunto(s)
Neuromielitis Óptica , Índice de Severidad de la Enfermedad , Sindecano-1 , Adolescente , Adulto , Citocinas/sangre , Citocinas/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Neuromielitis Óptica/sangre , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/patología , Solubilidad , Sindecano-1/sangre , Sindecano-1/inmunología
8.
J Biol Chem ; 291(42): 21984-22000, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27573247

RESUMEN

Although multidrug approaches to cancer therapy are common, few strategies are based on rigorous scientific principles. Rather, drug combinations are largely dictated by empirical or clinical parameters. In the present study we developed a strategy for rational design of a regimen that selectively targets human acute myelogenous leukemia (AML) stem cells. As a starting point, we used parthenolide, an agent shown to target critical mechanisms of redox balance in primary AML cells. Next, using proteomic, genomic, and metabolomic methods, we determined that treatment with parthenolide leads to induction of compensatory mechanisms that include up-regulated NADPH production via the pentose phosphate pathway as well as activation of the Nrf2-mediated oxidative stress response pathway. Using this knowledge we identified 2-deoxyglucose and temsirolimus as agents that can be added to a parthenolide regimen as a means to inhibit such compensatory events and thereby further enhance eradication of AML cells. We demonstrate that the parthenolide, 2-deoxyglucose, temsirolimus (termed PDT) regimen is a potent means of targeting AML stem cells but has little to no effect on normal stem cells. Taken together our findings illustrate a comprehensive approach to designing combination anticancer drug regimens.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Desoxiglucosa/farmacología , Femenino , Humanos , Leucemia Mieloide Aguda/patología , Masculino , NADP/biosíntesis , Células Madre Neoplásicas/patología , Sesquiterpenos/farmacología , Sirolimus/análogos & derivados , Sirolimus/farmacología , Regulación hacia Arriba/efectos de los fármacos
9.
Bioinformatics ; 32(6): 808-13, 2016 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-26589277

RESUMEN

MOTIVATION: Somatic variant calling typically requires paired tumor-normal tissue samples. Yet, paired normal tissues are not always available in clinical settings or for archival samples. RESULTS: We present SomVarIUS, a computational method for detecting somatic variants using high throughput sequencing data from unpaired tissue samples. We evaluate the performance of the method using genomic data from synthetic and real tumor samples. SomVarIUS identifies somatic variants in exome-seq data of ∼150 × coverage with at least 67.7% precision and 64.6% recall rates, when compared with paired-tissue somatic variant calls in real tumor samples. We demonstrate the utility of SomVarIUS by identifying somatic mutations in formalin-fixed samples, and tracking clonal dynamics of oncogenic mutations in targeted deep sequencing data from pre- and post-treatment leukemia samples. AVAILABILITY AND IMPLEMENTATION: SomVarIUS is written in Python 2.7 and available at http://www.sjdlab.org/resources/ CONTACT: subhajyoti.de@ucdenver.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Exoma , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias
10.
Haematologica ; 102(6): 1054-1065, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28280079

RESUMEN

Aldehyde dehydrogenase 1A1 (ALDH1A1) activity is high in hematopoietic stem cells and functions in part to protect stem cells from reactive aldehydes and other toxic compounds. In contrast, we found that approximately 25% of all acute myeloid leukemias expressed low or undetectable levels of ALDH1A1 and that this ALDH1A1- subset of leukemias correlates with good prognosis cytogenetics. ALDH1A1- cell lines as well as primary leukemia cells were found to be sensitive to treatment with compounds that directly and indirectly generate toxic ALDH substrates including 4-hydroxynonenal and the clinically relevant compounds arsenic trioxide and 4-hydroperoxycyclophosphamide. In contrast, normal hematopoietic stem cells were relatively resistant to these compounds. Using a murine xenotransplant model to emulate a clinical treatment strategy, established ALDH1A1- leukemias were also sensitive to in vivo treatment with cyclophosphamide combined with arsenic trioxide. These results demonstrate that targeting ALDH1A1- leukemic cells with toxic ALDH1A1 substrates such as arsenic and cyclophosphamide may be a novel targeted therapeutic strategy for this subset of acute myeloid leukemias.


Asunto(s)
Aldehído Deshidrogenasa/deficiencia , Quimioterapia Combinada/métodos , Leucemia Mieloide Aguda/tratamiento farmacológico , Familia de Aldehído Deshidrogenasa 1 , Animales , Trióxido de Arsénico , Arsenicales/uso terapéutico , Células Cultivadas , Ciclofosfamida/uso terapéutico , Xenoinjertos , Humanos , Leucemia Mieloide Aguda/enzimología , Ratones , Terapia Molecular Dirigida , Óxidos/uso terapéutico , Retinal-Deshidrogenasa
11.
J Biol Chem ; 288(47): 33542-33558, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24089526

RESUMEN

The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34(+)) leukemic versus normal specimens. Our data indicate that CD34(+) AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34(+) AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34(+) cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34(+) AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34(+) cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Dioxolanos/farmacología , Glutatión/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Sesquiterpenos/farmacología , Antígenos CD34 , Femenino , Glutamato-Cisteína Ligasa/antagonistas & inhibidores , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/antagonistas & inhibidores , Glutatión Peroxidasa/antagonistas & inhibidores , Glutatión Peroxidasa/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Masculino , Oxidación-Reducción/efectos de los fármacos , Células Tumorales Cultivadas , Glutatión Peroxidasa GPX1
12.
RNA Biol ; 11(9): 1171-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483042

RESUMEN

RNA interference (RNAi) is a eukaryotic gene-silencing system. Although the biochemistry of RNAi is relatively well defined, how this pathway is regulated remains incompletely understood. To identify genes involved in regulating the RNAi pathway, we screened for genetic mutations in Drosophila that alter the efficiency of RNAi. We identified the Drosophila homolog of the mammalian CR6-interacting factor 1 (CRIF1), also known as growth arrest and DNA-damage-inducible 45-gamma interacting protein (Gadd45GIP1), as a potential new regulator of the RNAi pathway. Loss-of-function mutants of Drosophila CRIF1 (dCRIF) are deficient in RNAi-mediated target gene knock-down, in the biogenesis of small interfering RNA (siRNA) molecules, and in antiviral immunity. Moreover, we show that dCRIF may function by interacting with, and stabilizing, the RNase III enzyme Dicer-2. Our results suggest that dCRIF may play an important role in regulating the RNAi pathway.


Asunto(s)
Animales Modificados Genéticamente/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , ARN Helicasas/química , Interferencia de ARN , ARN Interferente Pequeño/genética , Ribonucleasa III/química , Glándulas Salivales/inmunología , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Northern Blotting , Western Blotting , Células Cultivadas , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/virología
13.
Cancer Lett ; 588: 216767, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38417666

RESUMEN

Recently, the WHO-5 and the ICC 2022 criteria have emphasized poor prognosis in AML/MDS patients with multi-hit TP53 mutations, whereas mutated TP53 plays a critical role in tumorigenesis, drawing substantial interest in exploring its biological behaviors. Diverse characteristics of TP53 mutations, including types, VAF, CNVs, allelic status, karyotypes, and concurrent mutations have been extensively studied. Novel potential targets and comprehensive treatment strategies nowadays are under swift development, owing to great advances in technology. However, accurately predicting prognosis of patients with TP53-mutated myeloid neoplasms remains challenging. And there is still a lack of effective treatment for those patients.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Proteína p53 Supresora de Tumor/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Mutación , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Resultado del Tratamiento , Pronóstico
14.
Cancer Med ; 13(14): e7378, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031026

RESUMEN

INTRODUCTION: Although the combination of venetoclax (VEN) and hypomethylating agents (HMAs) results in impressive efficacy in acute myeloid leukemia (AML), there is still a subset of patients who are refractory. We investigated the outcomes of AML patients with monocytic differentiation who were treated with frontline VEN/HMA. METHODS: A total of 155 patients with newly diagnosed AML treated with frontline VEN/HMA were enrolled in the study. Monocyte-like AML was identified by flow cytometry with typical expression of monocytic markers, and M5 was identified according to French, American, and British category. We compared the outcomes of patients with different characteristics. RESULTS: The rate of complete remission (CR) and CR with incomplete recovery of blood counts (CRi), progression-free survival (PFS), and overall survival (OS) in monocyte-like AML were inferior to those in nonmonocyte-like AML (CR/CRi rates, 26.7% vs. 80.0%, p < 0.001; median PFS, 2.1 vs. 8.8 months, p < 0.001; median OS, 9.2 vs. 19 months, p = 0.013). CR/CRi rate in M5 was lower than that in non-M5 (60.7% vs. 75.5%, p = 0.049). Multivariate analyses showed that monocyte-like AML was associated with lower odds of CR/CRi and higher risk of progression. CONCLUSION: Our study suggested that newly diagnosed AML with a monocytic immunophenotype had a poor prognosis with VEN/HMA treatment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Compuestos Bicíclicos Heterocíclicos con Puentes , Diferenciación Celular , Leucemia Mieloide Aguda , Monocitos , Sulfonamidas , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Masculino , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Femenino , Sulfonamidas/uso terapéutico , Sulfonamidas/farmacología , Persona de Mediana Edad , Anciano , Monocitos/efectos de los fármacos , Adulto , Diferenciación Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Anciano de 80 o más Años , Adulto Joven , Metilación de ADN
15.
Cancer Discov ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787341

RESUMEN

Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. While venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e. OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance.

16.
Cell Death Dis ; 14(2): 103, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765034

RESUMEN

The activation of the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome triggers pyroptosis proinflammatory cell death in experimental autoimmune encephalomyelitis (EAE). However, the underlying mechanisms of the inflammatory processes of microglia in EAE remain unclear. Our previous studies suggested that interleukin-1 receptor-associated kinase (IRAK)-M down-regulates the toll-like receptor 4/interleukin-1 receptor signaling pathway. Here, we used IRAK-M knockout (IRAK-M-/-) mice and their microglia to dissect the role of IRAK-M in EAE. We found that deletion of IRAK-M increased the incidence rate and exacerbated the clinical symptoms in EAE mice. We then found that IRAK-M deficiency promoted the activation of microglia, activated NLRP3 inflammasomes, and enhanced GSDMD-mediated pyroptosis in the microglia of EAE. In contrast, over-expression of IRAK-M exerted inhibitory effects on neuroinflammation, NLRP3 activation, and pyroptosis. Moreover, IRAK-M deficiency enhanced the phosphorylation of IRAK1, while IRAK-M over-expression downregulated the level of phosphorylated IRAK1. Finally, we found upregulated binding of IRAK1 and TNF receptor-associated factor 6 (TRAF6) in IRAK-M-/- EAE mice compared to WT mice, which was blocked in AAVIRAK-M EAE mice. Our study reveals a complex signaling network of IRAK-M, which negatively regulates microglial NLRP3 inflammasomes and pyroptosis by inhibiting IRAK1 phosphorylation during EAE. These findings suggest a potential target for the novel therapeutic approaches of multiple sclerosis (MS)/EAE and NLRP3-related inflammatory diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Inflamasomas , Animales , Ratones , Inflamasomas/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fosforilación , Piroptosis
17.
Metabolites ; 13(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37110126

RESUMEN

Recent advances in targeting leukemic stem cells (LSCs) using venetoclax with azacitidine (ven + aza) has significantly improved outcomes for de novo acute myeloid leukemia (AML) patients. However, patients who relapse after traditional chemotherapy are often venetoclax-resistant and exhibit poor clinical outcomes. We previously described that fatty acid metabolism drives oxidative phosphorylation (OXPHOS) and acts as a mechanism of LSC survival in relapsed/refractory AML. Here, we report that chemotherapy-relapsed primary AML displays aberrant fatty acid and lipid metabolism, as well as increased fatty acid desaturation through the activity of fatty acid desaturases 1 and 2, and that fatty acid desaturases function as a mechanism of recycling NAD+ to drive relapsed LSC survival. When combined with ven + aza, the genetic and pharmacologic inhibition of fatty acid desaturation results in decreased primary AML viability in relapsed AML. This study includes the largest lipidomic profile of LSC-enriched primary AML patient cells to date and indicates that inhibition of fatty acid desaturation is a promising therapeutic target for relapsed AML.

18.
Front Cell Infect Microbiol ; 13: 1297078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156316

RESUMEN

The rapid evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the emergence of new variants with different genetic profiles, with important implications for public health. The continued emergence of new variants with unique genetic features and potential changes in biological properties poses significant challenges to public health strategies, vaccine development, and therapeutic interventions. Omicron variants have attracted particular attention due to their rapid spread and numerous mutations in key viral proteins. This review aims to provide an updated and comprehensive assessment of the epidemiological characteristics, immune escape potential, and therapeutic advances of the SARS-CoV-2 Omicron XBB.1.5 variant, as well as other variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Salud Pública , Mutación
19.
Leukemia ; 37(8): 1638-1648, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37393342

RESUMEN

Vitamin C has been demonstrated to regulate hematopoietic stem cell frequencies and leukemogenesis by augmenting and restoring Ten-Eleven Translocation-2 (TET2) function, potentially acting as a promising adjunctive therapeutic agent for leukemia. However, glucose transporter 3 (GLUT3) deficiency in acute myeloid leukemia (AML) impedes vitamin C uptake and abolishes the clinical benefit of vitamin C. In this study, we aimed to investigate the therapeutic value of GLUT3 restoration in AML. In vitro GLUT3 restoration was conducted with the transduction of GLUT3-overexpressing lentivirus or the pharmacological salvage with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) treatment to OCI-AML3, a naturally GLUT3-deficient AML cell line. The effects of GLUT3 salvage were further confirmed in patient-derived primary AML cells. Upregulation of GLUT3 expression made AML cells successfully augment TET2 activity and enhanced the vitamin C-induced anti-leukemic effect. Pharmacological GLUT3 salvage has the potential to overcome GLUT3 deficiency in AML and improves the antileukemic effect of vitamin C treatments.


Asunto(s)
Dioxigenasas , Leucemia Mieloide Aguda , Humanos , Ácido Ascórbico/farmacología , Transportador de Glucosa de Tipo 3 , Leucemia Mieloide Aguda/genética , Vitamina A/metabolismo , Vitamina A/uso terapéutico , Translocación Genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo
20.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873284

RESUMEN

We previously reported that acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL2, creating a therapeutic opportunity to target LSCs using the BCL2 inhibitor drug venetoclax. While venetoclax-based regimens have indeed shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence mechanisms that dictate venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e., OXPHOS) status with relatively high steady-state levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake sharply reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in the biology of LSCs and provide a therapeutic avenue for clinical management of venetoclax resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA