Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Microbiol Spectr ; 12(6): e0393023, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38687077

RESUMEN

This study aims to elucidate additional mutation loci associated with fluoroquinolone (FQ) resistance and evaluate the discriminatory capacity of mutation loci and allele mutation frequencies in identifying FQ-resistant Mycobacterium tuberculosis (MTB) isolates. A random selection of isolates was extracted from an ongoing collection. Drug resistance was determined using the resazurin microtiter assay (REMA) as the gold standard. Mutation loci and the burden of mutations in the quinolone resistance-determining region (QRDR) were elucidated through whole-genome sequencing (WGS). Novel amino acid mutations, namely, G520D and G520T, were identified in the gyrB and associated with FQ resistance. In the context of distinguishing FQ-resistant isolates, the AUC for the QRDR mutation frequency burden (0.969) surpassed that of the mutation locus (0.929), and this difference was statistically significant (P = 0.03). Furthermore, using the resistance mutation locus as a reference, setting the QRDR mutation frequency burden threshold at 1.31% resulted in a 3.60% increase in the accuracy of classifying FQ-resistant isolates (NRI = 3.60%, P < 0.001). The QRDR mutation frequency burden appears to offer superior diagnostic efficacy in discriminating FQ-resistant isolates compared to qualitative detection of mutant loci.IMPORTANCEFluoroquinolone (FQ) drugs are recommended as second-line drugs for the treatment of multidrug-resistant tuberculosis. With the massive use of FQ drugs in the clinical treatment of tuberculosis (TB), there is an increasing rate of drug resistance to FQ drugs. In this study, we identified and demonstrated novel amino acid mutations associated with FQ resistance in Mycobacterium tuberculosis (MTB), and we quantified the mutation sites and identified the quinolone resistance-determining region (QRDR) mutation frequency burden as a novel diagnostic method for FQ resistance. We hope that the results of this study will provide data support and a theoretical basis for the rapid diagnosis of FQ-resistant MTB.


Asunto(s)
Antituberculosos , Fluoroquinolonas , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Secuenciación Completa del Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Fluoroquinolonas/farmacología , Humanos , Antituberculosos/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano/genética , Girasa de ADN/genética
2.
Sci Rep ; 13(1): 8510, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231062

RESUMEN

Manganese dioxide nanoparticles (MnO2-NPs) have a wide range of applications in biomedicine. Given this widespread usage, it is worth noting that MnO2-NPs are definitely toxic, especially to the brain. However, the damage caused by MnO2-NPs to the choroid plexus (CP) and to the brain after crossing CP epithelial cells has not been elucidated. Therefore, this study aims to investigate these effects and elucidate potential underlying mechanisms through transcriptomics analysis. To achieve this objective, eighteen SD rats were randomly divided into three groups: the control group (control), low-dose exposure group (low-dose) and high-dose exposure group (high-dose). Animals in the two treated groups were administered with two concentrations of MnO2-NPs (200 mg kg-1 BW and 400 mg kg-1 BW) using a noninvasive intratracheal injection method once a week for three months. Finally, the neural behavior of all the animals was tested using a hot plate tester, open-field test and Y-type electric maze. The morphological characteristics of the CP and hippocampus were observed by H&E stain, and the transcriptome of CP tissues was analysed by transcriptome sequencing. The representative differentially expressed genes were quantified by qRT-PCR. We found that treatment with MnO2-NPs could induce learning capacity and memory faculty decline and destroy the structure of hippocampal and CP cells in rats. High doses of MnO2-NPs had a more obvious destructive capacity. For transcriptomic analysis, we found that there were significant differences in the numbers and types of differential genes in CP between the low- and high-dose groups compared to the control. Through GO terms and KEGG analysis, high-dose MnO2-NPs significantly affected the expression of transporters, ion channel proteins, and ribosomal proteins. There were 17 common differentially expressed genes. Most of them were transporter and binding genes on the cell membrane, and some of them had kinase activity. Three genes, Brinp, Synpr and Crmp1, were selected for qRT-PCR to confirm their expression differences among the three groups. In conclusion, high-dose MnO2-NPs exposure induced abnormal neurobehaviour, impaired memory function, destroyed the structure of the CP and changed its transcriptome in rats. The most significant DEGs in the CP were within the transport system.


Asunto(s)
Nanopartículas , Óxidos , Ratas , Animales , Óxidos/toxicidad , Óxidos/química , Compuestos de Manganeso/química , Plexo Coroideo , Transcriptoma , Ratas Sprague-Dawley , Nanopartículas/toxicidad
3.
Sci Rep ; 11(1): 17423, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465797

RESUMEN

We aimed to elucidate the differences in genomic methylation patterns between ADLI and non-ADLI patients to identify DNA methylation-based biomarkers. Genome-wide DNA methylation patterns were obtained using Infinium MethylationEPIC (EPIC) BeadChip array to analyze 14 peripheral blood samples (7 ADLI cases, 7 non-ADLI controls). Changes in the mRNA and DNA methylation in the target genes of another 120 peripheral blood samples (60 ADLI cases, 60 non-ADLI controls) were analyzed by real-time polymerase chain reaction and pyrosequencing, respectively. A total of 308 hypermethylated CpG sites and 498 hypomethylated CpG sites were identified. Significantly, hypermethylated CpG sites cg06961147 and cg24666046 in TANC1 associated with ADLI was identified by genome-wide DNA methylation profiling. The mRNA expression of TANC1 was lower in the cases compared to the controls. Pyrosequencing validated these two differentially methylated loci, which was consistent with the results from the EPIC BeadChip array. Receiver operating characteristic analysis indicated that the area under the curve of TANC1 (cg06961147, cg24666046, and their combinations) was 0.812, 0.842, and 0.857, respectively. These results indicate that patients with ADLI have different genomic methylation patterns than patients without ADLI. The hypermethylated differentially methylated site cg06961147 combined with cg24666046 in TANC1 provides evidence for the diagnosis of ADLI.


Asunto(s)
Antituberculosos/efectos adversos , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Metilación de ADN , Proteínas de la Membrana/genética , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Adulto , Estudios de Casos y Controles , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Islas de CpG , Epigénesis Genética , Femenino , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Regiones Promotoras Genéticas , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA