Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(13): 3394-3409.e20, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34077752

RESUMEN

The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth.


Asunto(s)
Bacterias/metabolismo , Desarrollo Embrionario , Feto/citología , Feto/microbiología , Leucocitos/citología , Adulto , Bacterias/genética , Bacterias/ultraestructura , Proliferación Celular , Células Dendríticas/metabolismo , Femenino , Feto/ultraestructura , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/ultraestructura , Humanos , Memoria Inmunológica , Activación de Linfocitos/inmunología , Viabilidad Microbiana , Embarazo , Segundo Trimestre del Embarazo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Linfocitos T/citología
2.
Plant Cell ; 34(10): 3665-3684, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897146

RESUMEN

The endoplasmic reticulum-localized DnaJ family 3B (ERdj3B), is a component of the stromal cell-derived factor 2 (SDF2)-ERdj3B-binding immunoglobulin protein (BiP) chaperone complex, which functions in protein folding, translocation, and quality control. We found that ERdj3B mutations affected integument development in the Ler ecotype but not in the Col-0 ecotype of Arabidopsis (Arabidopsis thaliana). Map-based cloning identified the ERECTA (ER) gene as a natural modifier of ERdj3B. The double mutation of ERdj3B and ER caused a major defect in the inner integument under heat stress. Additional mutation of the ER paralog ERECTA-LIKE 1 (ERL1) or ERL2 to the erdj3b er double mutant exacerbated the defective integument phenotype. The double mutation of ER and SDF2, the other component of the SDF2-ERdj3B-BiP complex, resulted in similar defects in the inner integument. Furthermore, both the protein abundance and plasma membrane partitioning of ER, ERL1, and ERL2 were markedly reduced in erdj3b plants, indicating that the SDF2-ERdj3B-BiP chaperone complex might control the translocation of ERECTA-family proteins from the endoplasmic reticulum to the plasma membrane. Our results suggest that the SDF2-ERdj3B-BiP complex functions in ovule development and the heat stress response in coordination with ERECTA-family receptor kinases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Respuesta al Choque Térmico , Óvulo Vegetal/metabolismo , Proteínas Serina-Treonina Quinasas
3.
J Infect Dis ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996071

RESUMEN

BACKGROUND: The emergence of rapidly evolving SARS-CoV-2 variants, coupled with waning vaccine-induced immunity, has contributed to the rise of vaccine breakthrough infections. It is crucial to understand how vaccine-induced protection is mediated. METHODS: We examined two prospective cohorts of mRNA-vaccinated-and-boosted individuals during the Omicron wave of infection in Singapore. RESULTS: We found that, individuals, who remain uninfected over the follow-up period, had a higher variant-specific IgA, but not IgG, antibody response at 1-month post booster vaccination, compared with individuals who became infected. CONCLUSIONS: We conclude that IgA may have a potential contributory role in protection against Omicron infection.

4.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3493-3504, 2024 Jul.
Artículo en Zh | MEDLINE | ID: mdl-39041121

RESUMEN

Based on the processing and compatibility, this study explored the effects of components in Corni Fructus(CF) and Astragali Radix(AR) on plasma metabolomics in diabetic nephropathy rats. SD rats were randomly divided into four groups and diabetic nephropathy rat model was induced by high-fat diet combined with 30 mg·kg~(-1) streptozotocin(STZ). Histopathological observations of kidney tissue sections of rats in each group were conducted using HE, PAS, and Masson staining. Ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) metabolomics method was employed to investigate the effects of CF before and after wine-processing combined with AR-related components on plasma metabolites in diabetic nephropathy rats. After drug treatment, kidney tissue damage and interstitial collagen fiber deposition area in diabetic nephropathy rats were improved to varying degrees(P<0.001). The detection results of plasma metabolomics showed that 71 biomarkers related to the pathogenesis of diabetic nephropathy were identified in diseased rats, mainly involving linoleic acid metabolism, caffeine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, phenylalanine metabolism, retinol metabolism, and ether lipid metabolism. After drug intervention, 26 of them were significantly downregulated, with better efficacy observed in precision processed herb-pair group(P-CG_5). This study elucidated from the perspective of plasma metabolomics that P-CG_5 could improve metabolic disorders in diabetic nephropathy through pathways such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and caffeine metabolism, providing theoretical support and experimental basis for the clinical application of CF and AR compatibility in traditional Chinese medicine.


Asunto(s)
Cornus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Metabolómica , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Ratas , Masculino , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Cornus/química , Astragalus propinquus/química , Vino/análisis , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo
5.
J Med Virol ; 95(1): e28258, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36305052

RESUMEN

Waning antibody levels against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of variants of concern highlight the need for booster vaccinations. This is particularly important for the elderly population, who are at a higher risk of developing severe coronavirus disease 2019 (COVID-19) disease. While studies have shown increased antibody responses following booster vaccination, understanding the changes in T and B cell compartments induced by a third vaccine dose remains limited. We analyzed the humoral and cellular responses in subjects who received either a homologous messenger RNA(mRNA) booster vaccine (BNT162b2 + BNT162b2 + BNT162b2; ''BBB") or a heterologous mRNA booster vaccine (BNT162b2 + BNT162b2 + mRNA-1273; ''BBM") at Day 0 (prebooster), Day 7, and Day 28 (postbooster). Compared with BBB, elderly individuals (≥60 years old) who received the BBM vaccination regimen display higher levels of neutralizing antibodies against the Wuhan and Delta strains along with a higher boost in immunoglobulin G memory B cells, particularly against the Omicron variant. Circulating T helper type 1(Th1), Th2, Th17, and T follicular helper responses were also increased in elderly individuals given the BBM regimen. While mRNA vaccines increase antibody, T cell, and B cell responses against SARS-CoV-2 1 month after receiving the third dose booster, the efficacy of the booster vaccine strategies may vary depending on age group and regimen combination.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anciano , Humanos , Persona de Mediana Edad , SARS-CoV-2/genética , Vacuna BNT162 , COVID-19/prevención & control , Vacunas de ARNm , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunación
6.
J Comput Assist Tomogr ; 47(3): 361-368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184997

RESUMEN

OBJECTIVE: The aim of the study is to investigate the value of computed tomography (CT) radiomics features to discriminate the liver metastases (LMs) of digestive system neuroendocrine tumors (NETs) from neuroendocrine carcinoma (NECs). METHODS: Ninety-nine patients with LMs of digestive system neuroendocrine neoplasms from 2 institutions were included. Radiomics features were extracted from the portal venous phase CT images by the Pyradiomics and then selected by using the t test, Pearson correlation analysis, and least absolute shrinkage and selection operator method. The radiomics score (Rad score) for each patient was constructed by linear combination of the selected radiomics features. The radiological model was constructed by radiological features using the multivariable logistic regression. Then, the combined model was constructed by combining Rad score and the radiological model into logistic regression. The performance of all models was evaluated by the receiver operating characteristic curves with the area under curve (AUC). RESULTS: In the radiological model, only the enhancement degree (odds ratio, 8.299; 95% confidence interval, 2.070-32.703; P = 0.003) was an independent predictor for discriminating the LMs of digestive system NETs from those of NECs. The combined model constructed by the Rad score in combination with the enhancement degree showed good discrimination performance, with AUCs of 0.893, 0.841, and 0.740 in the training, testing, and external validation groups, respectively. In addition, it performed better than radiological model in the training and testing groups (AUC, 0.893 vs 0.726; AUC, 0.841 vs 0.621). CONCLUSIONS: The CT radiomics might be useful for discrimination LMs of digestive system NECs from NETs.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Hepáticas , Tumores Neuroendocrinos , Humanos , Tumores Neuroendocrinos/diagnóstico por imagen , Carcinoma Neuroendocrino/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Neoplasias Hepáticas/diagnóstico por imagen , Sistema Digestivo , Estudios Retrospectivos
7.
Neoplasma ; 70(2): 272-286, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37226932

RESUMEN

Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (NUCKS1) is highly expressed in a variety of malignant tumors and functions as an oncogene; however, its role in colorectal cancer (CRC) remains unclear. We aimed to explore the function and regulatory mechanisms of NUCKS1 and potential therapeutic agents targeting NUCKS1 in CRC. We knocked down and overexpressed NUCKS1 in CRC cells and explored its effects in vitro and in vivo. Flow cytometry, CCK-8, Western blotting, colony formation, immunohistochemistry, in vivo tumorigenic, and transmission electron microscopy analyses were performed to determine the effects of NUCKS1 on CRC cell function. LY294002 was used to examine the mechanism of NUCKS1 expression in CRC cells. Potential therapeutic agents for NUCKS1-high CRC patients were analyzed using the CTRP and PRISM datasets, and the function of selected agents was determined by CCK-8 and Western blotting. We revealed that NUCKS1 was highly expressed in CRC tissues and clinically correlated with poor prognosis in CRC patients. NUCKS1 knockdown induces cell cycle arrest, inhibits CRC cell proliferation, and promotes apoptosis and autophagy. These results were reversed when NUCKS1 was overexpressed. Mechanistically, NUCKS1 exerts a cancer-promoting function by activating the PI3K/AKT/mTOR signaling pathway. This was reversed when LY294002 was used to inhibit the PI3K/AKT pathway. Furthermore, we determined that mitoxantrone exhibited high drug sensitivity in NUCKS1-overexpressing CRC cells. This work demonstrated NUCKS1 plays a crucial role in CRC progression via the PI3K/AKT/mTOR signaling pathway. Additionally, mitoxantrone may be a potential therapeutic agent for CRC treatment. Therefore, NUCKS1 represents a promising anti-tumor therapeutic target.


Asunto(s)
Neoplasias Colorrectales , Proteínas Nucleares , Fosfatidilinositol 3-Quinasas , Fosfoproteínas , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Mitoxantrona , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
8.
Ecotoxicol Environ Saf ; 263: 115391, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37611474

RESUMEN

Cardiac hypertrophy, a kind of cardiomyopathic abnormality, might trigger heart contractile and diastolic dysfunction, and even heart failure. Currently, bisphenols (BPs) including bisphenol A (BPA), and its alternatives bisphenol AF (BPAF), bisphenol F (BPF) and bisphenol S (BPS) are ubiquitously applied in various products and potentially possess high cardiovascular risks for humans. However, the substantial experimental evidences of BPs on heart function, and their structure-related effects on cardiomyocyte hypertrophy are still urgently needed. DNA methylation, a typical epigenetics, play key roles in BPs-induced transcription dysregulation, thereby affecting human health including cardiovascular system. Thus, in this study, we performed RNA-seq and reduced representation bisulfite sequencing (RRBS) to profile the landscapes of BPs-induced cardiotoxicity and to determine the key roles of DNA methylation in the transcription. Further, the capabilities of three BPA analogues, together with BPA, in impacting heart function and changing DNA methylation and transcription were compared. We concluded that similar to BPA, BPAF, BPF and BPS exposure deteriorated heart function in a mouse model, and induced cardiomyocyte hypertrophy in a H9c2 cell line. BPAF, BPF and BPS all played BPA-like roles in both transcriptive and methylated hierarchies. Moreover, we validated the expression levels of four cardiomyocyte hypertrophy related candidate genes, Psmc1, Piptnm2, Maz and Dusp18, which were all upregulated and with DNA hypomethylation. The findings on the induction of BPA analogues on cardiomyocyte hypertrophy and DNA methylation revealed their potential detrimental risks in heart function of humans.


Asunto(s)
Epigénesis Genética , Epigenoma , Humanos , Animales , Ratones , Transcriptoma , Miocitos Cardíacos , Hipertrofia
9.
Acta Pharmacol Sin ; 43(4): 788-796, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34349236

RESUMEN

An epidemic of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. SARS-CoV-2 relies on its spike protein to invade host cells by interacting with the human receptor protein Angiotensin-Converting Enzymes 2 (ACE2). Therefore, designing an antibody or small-molecular entry blockers is of great significance for virus prevention and treatment. This study identified five potential small molecular anti-virus blockers via targeting SARS-CoV-2 spike protein by combining in silico technologies with in vitro experimental methods. The five molecules were natural products that binding to the RBD domain of SARS-CoV-2 was qualitatively and quantitively validated by both native Mass Spectrometry (MS) and Surface Plasmon Resonance (SPR). Anti-viral activity assays showed that the optimal molecule, H69C2, had a strong binding affinity (dissociation constant KD) of 0.0947 µM and anti-virus IC50 of 85.75 µM.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Unión Proteica , SARS-CoV-2
10.
Surg Endosc ; 36(12): 9046-9053, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35764836

RESUMEN

BACKGROUND: Postoperative pain treatment for pediatrics is often inadequate and the evidence of pediatric postoperative analgesia is scarce. To our knowledge, no report regarding the comparison among caudal block, transversus abdominis plane (TAP) block and quadratus lumborum (QL) block for children undergoing lower abdominal laparoscopic surgery was found at present. Thus this trial aimed to compare the efficacies of them for children undergoing lower abdominal laparoscopic surgery. METHODS: One hundred and eighty children aged from 1 to 12 years undergoing lower abdominal laparoscopic surgery were included and randomized to receive caudal block, TAP block or QL block. The primary outcome was the Face, Legs, Activity, Cry, and Consolability (FLACC) score at 30 min, 1 h, 4 h, 8 h, 12 h, and 24 h and tramadol consumption during first 24 h postoperatively. Secondary outcomes included the number of children received tramadol, time to first tramadol request, parents' satisfaction and postoperative adverse reactions. RESULTS: The QLB group had lower postoperative FLACC scores at 8 h (median difference - 0.43, P = 0.03) than the Caudal group and at 4 h (median difference - 0.6, P = 0.001) and 8 h (median difference - 0.43, P = 0.03) than the TAPB group. The tramadol consumption was lower in the QLB group (28.43 ± 6.55) than the TAPB group (37.17 ± 6.12, P = 0.023). Although the number of children received tramadol did not differ among the three groups, the time to first tramadol request was longer in the QLB group (7.20 ± 0.79) than the caudal group (8.42 ± 0.61, P = 0.008). No statistical difference was observed concerning other secondary outcomes. CONCLUSIONS: QLB produced more effective postoperative analgesia for children undergoing laparoscopic abdominal surgery compared with the TAPB and caudal block.


Asunto(s)
Analgesia , Laparoscopía , Tramadol , Niño , Humanos , Tramadol/uso terapéutico , Músculos Abdominales , Dolor Postoperatorio/etiología , Dolor Postoperatorio/prevención & control , Dolor Postoperatorio/tratamiento farmacológico , Ultrasonografía Intervencional , Anestésicos Locales
11.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2572-2583, 2022 May.
Artículo en Zh | MEDLINE | ID: mdl-35718475

RESUMEN

Ziziphi Spinosae Semen(ZSS), a precious bulk Chinese medicinal, has long been used for nourishing heart and tonifying liver, calming the heart and tranquilizing the mind. Based on materia medica records, medical classics, and relevant literature, this study summarized the evolution and development of the processing methods of ZSS, verified the purposes of ancient processing and efficacy of ZSS, checked whether the decoction pieces of ZSS had been included in national and provincial standards, and concluded the research progress on processing mechanism of ZSS. A total of 9 processing methods have been recorded, such as plain stir-frying and stir-frying with adjuvants. It was a common view that ZSS was endowed with a different purpose after being processed in ancient times. However, in modern times, different views, such as ZSS and processed ZSS for the same purpose, and processing enhancing the efficacy of ZSS, emerge. At the moment, processed ZSS are included in 10 editions of Chinese Pharmacopoeia and the processing methods of ZSS can be retrieved in 22 provincial specifications on processing. Plain stir-frying is currently the mainstream processing method. The chemical components, such as flavonoids, saponins, and fatty acids, in the medicinal, change after processing, but ZSS and the stir-fried ZSS show no significant difference in tranquilizing mind, improving learning and memory, and alleviating anxiety. The problems in the research on ZSS processing were analyzed in this study. In addition, the author also discussed the inheritance of ancient methods, the scientific connotation of processing, and the improvement of decoction pieces standards, hoping to provide new ideas for the clinical rational use and the decoction pieces standard improvement of ZSS.


Asunto(s)
Saponinas , Semillas , Ziziphus , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos
12.
Infect Immun ; 89(10): e0002421, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34251290

RESUMEN

Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a severe complication of malaria that occurs despite effective antimalarial treatment. Currently, noninvasive imaging procedures such as chest X-rays are used to assess edema in established MA-ARDS, but earlier detection methods are needed to reduce morbidity and mortality. The early stages of MA-ARDS are characterized by the infiltration of leukocytes, in particular monocytes/macrophages; thus, monitoring of immune infiltrates may provide a useful indicator of early pathology. In this study, Plasmodium berghei ANKA-infected C57BL/6 mice, a rodent model of MA-ARDS, were longitudinally imaged using the 18-kDa translocator protein (TSPO) imaging agent [18F]FEPPA as a marker of macrophage accumulation during the development of pathology and in response to combined artesunate and chloroquine diphosphate (ART+CQ) therapy. [18F]FEPPA uptake was compared to blood parasitemia levels and to levels of pulmonary immune cell infiltrates by using flow cytometry. Infected animals showed rapid increases in lung retention of [18F]FEPPA, correlating well with increases in blood parasitemia and pulmonary accumulation of interstitial inflammatory macrophages and major histocompatibility complex class II (MHC-II)-positive alveolar macrophages. Treatment with ART+CQ abrogated this increase in parasitemia and significantly reduced both lung uptake of [18F]FEPPA and levels of macrophage infiltrates. We conclude that retention of [18F]FEPPA in the lungs is well correlated with changes in blood parasitemia and levels of lung-associated macrophages during disease progression and in response to ART+CQ therapy. With further development, TSPO biomarkers may have the potential to accurately assess the early onset of MA-ARDS.


Asunto(s)
Biomarcadores/metabolismo , Pulmón/metabolismo , Malaria/metabolismo , Neumonía/metabolismo , Animales , Modelos Animales de Enfermedad , Leucocitos/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Plasmodium berghei/patogenicidad , Tomografía de Emisión de Positrones/métodos , Síndrome de Dificultad Respiratoria/metabolismo
13.
Lab Invest ; 101(8): 1071-1083, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33875793

RESUMEN

A diabetic foot ulcer (DFU) is one of the most devastating complications of diabetes. It has been reported that lncRNA GAS5 plays a vital role in wound healing in DFUs. However, the specific mechanism remains unclear. In this research, we aimed to investigate the role of GAS5 in wound healing in DFUs as well as the underlying mechanism. qPCR or western blotting was performed to measure the expression levels of GAS5, HIF1A, VEGF and TAF15. CCK-8 or EdU assays, flow cytometry, wound healing assays and tube formation assays were carried out to assess the proliferation, apoptosis, wound healing and in vitro angiogenesis of HUVECs, respectively. RNA pull-down and RIP assays were performed to verify the interaction between GAS5 and TAF15. ChIP and luciferase assays were conducted to verify the binding of TAF15 to the HIF1A promoter. In the DFU mouse model, H&E and Masson staining were used to determine epidermal and dermal thickness and collagen formation. GAS5 and HIF1A were downregulated in the skin tissues of DFU patients, and GAS5 overexpression promoted cell proliferation, wound healing and tubule formation in HG-treated HUVECs. In addition, GAS5 facilitated HIF1A expression by interacting with TAF15. Rescue assays demonstrated that the suppression of HIF1A/VEGF pathway activation partially reversed the functional roles of GAS5 in HUVECs. Furthermore, GAS5 accelerated wound healing by activating the HIF1A/VEGF pathway in mice with DFUs. GAS5 activates the HIF1A/VEGF pathway by binding to TAF15, resulting in accelerated wound healing in DFUs. Our findings may provide a theoretical basis for the clinical treatment of DFUs.


Asunto(s)
Pie Diabético/metabolismo , ARN Largo no Codificante , Factores Asociados con la Proteína de Unión a TATA , Cicatrización de Heridas/genética , Adulto , Anciano , Animales , Proliferación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Persona de Mediana Edad , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Zhongguo Zhong Yao Za Zhi ; 46(3): 620-629, 2021 Feb.
Artículo en Zh | MEDLINE | ID: mdl-33645028

RESUMEN

In this study, the antioxidant property changes in fermented Ziziphi Spinosae Semen(FZSS) with Poria cocos were analyzed by DPPH, ABTS and FRAP methods. Then the content determination of active ingredients and ~1H nuclear magnetic resonance(~1H-NMR) spectroscopy were also used to investigate the mechanism of FZSS with P. cocos in enhancing the antioxidant activity. The results showed that the content of active ingredients such as total phenols, total saponins and total polysaccharides were significantly increased during the fermentation time. The results of ~1H-NMR metabonomics showed that the contents of amino acids such as leucine, lysine, valine and alanine, nitrogen compounds such as creatine, creatinine, and betaine, and secondary metabolites, for instance, jujuboside A and spinosin were higher after fermentation, and above components showed positive correlation with antioxidant capacity in Pearson correlation analysis. Therefore, it was inferred that the enhancement of antioxidant activity of FZSS may be the result of the joint action of various chemical components. This study preliminarily clarified the mechanism of FZSS in enhancing the antioxidant activity, and provided new research ideas for the product development and utilization of FZSS.


Asunto(s)
Medicamentos Herbarios Chinos , Poria , Wolfiporia , Ziziphus , Antioxidantes , Cromatografía Líquida de Alta Presión , Semen
15.
Zhongguo Zhong Yao Za Zhi ; 45(20): 4984-4990, 2020 Oct.
Artículo en Zh | MEDLINE | ID: mdl-33350273

RESUMEN

To explore the molecular mechanism of Yixinshu Capsules(YXS) in restoring cardiac function in rats with heart failure(HF) from the perspective of calmodulin in cardiac myocytes on the basis of determining the therapeutic effect of YXS on HF. The SD rats were subjected to the surgery of ligating the anterior descending branch of the left coronary artery for 4 weeks to established myocardial ischemia-induced heart failure animal model. Then the rats were randomly divided into Sham operation group(Sham, saline), model group(HF, saline), high dose YXS group(HF+YXS-H, 1 600 mg·kg~(-1)·d~(-1)), low dose YXS group(HF+YXS-L, 800 mg·kg~(-1)·d~(-1)) and positive drug valsartan group(HF+VST, 8 mg·kg~(-1)·d~(-1)). After continuous intragastric administration for 6 weeks, the rats were sacrificed and myocardial tissue was collected. Real time quantitative polymerase chain reaction(RT-PCR) and Western blot were used to detect the expression of genes and proteins related to calcium regulation in cardiomyocytes. RESULTS:: showed that as compared with the model group, YXS increased the transcription level of Atp2 a2, Ryr2, CACNA1 C and PRKACA, and increased the expression levels of P-Ryr2, CACNA1 C and SERCA2 a, while decreased the level of NCX1.On the other hand, YXS treatment significantly decreased the RIP3 level and the phosphorylation of its substrate CaMKⅡ protein, and enhanced the phosphorylation expression of PLB. In summary, YXS therapy could regulate the expression of genes and proteins related to calcium regulation in cardiomyocytes, decrease RIP3 and the phosphorylation of CaMKⅡ protein, increase the phosphorylation of PLB at Ser16, and increase the expression of SERCA2 a protein, suggesting that YXS may regulate myocardial calcium homeostasis through CaMKⅡ/PLB/SERCA2 a pathway, to improve the ability of calcium uptake in sarcoplasmic reticulum and stabilize intracellular free Ca~(2+), so as to improve the cardiac function in rats with heart failure. Our study revealed the possible mechanism of YXS in the treatment of heart failure, especially from the perspective of intervention of calmodulin, promoting the clinical application of YXS.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Calcio , Cápsulas , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Ratas , Ratas Sprague-Dawley
16.
Zhongguo Zhong Yao Za Zhi ; 45(19): 4561-4573, 2020 Oct.
Artículo en Zh | MEDLINE | ID: mdl-33164419

RESUMEN

Coptidis Rhizoma was a commonly used antipyretic and dampening drug in clinic, which was first recorded in the Shennong's Herbal Classic of Materia Medica and which was listed as one of the highest grade herb in traditional Chinese medicine. Traditionally, Coptidis Rhizoma was used to treat dampness with distention and fullness, vomiting with acid regurgitation, acne, heartbum, etc. At present, a total of 133 chemical components have been isolated and identified from Coptidis Rhizoma, which can be divided into alkaloids(44 species), lignans(32 species), flavonoids(9 species), phenylpropionic acid and its derivatives(26 species) and other compounds(22 species) according to the differences in structure types. Modern studies have shown that berberine is one of the most important active composition of Coptidis Rhizoma, which not only has an effect on the antibacterial, antiviral and anti-gastric ulcer, but also plays a vital role in reducing blood sugar, lowering blood fat, anti-tumor and treating cardiovascular and cerebrovascular diseases. The chemical constituents of Coptidis Rhizoma and pharmacological effects of berberine were reviewed in this study, which was expected to provide references for the further research, development of and clinical application of Coptidis Rhizoma and berberine.


Asunto(s)
Berberina , Coptis , Medicamentos Herbarios Chinos , Berberina/farmacología , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Rizoma
17.
J Am Chem Soc ; 141(23): 9134-9139, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31131600

RESUMEN

The flexible organic amine cations on the interfaces of two-dimensional (2D) hybrid organic-inorganic perovskite nanosheets could form relaxed structures, which would lead to exotic optoelectronic properties but are hard to understand. Here, the unusual interfacial relaxation of nanosheets exfoliated from an orthorhombic 2D lead halide perovskite, [(C6H5CH2NH3)2]PbCl4, is interrogated via ultrafast second-harmonic generation (SHG) spectroscopy. The in-plane SHG intensity anisotropy of these nanosheets is found to decrease with reducing layer thickness. Combined first-principles calculations and Monte Carlo simulations reveal that the induced second-order polarization arises primarily from the (C6H5CH2NH3)+ cations; and these organic amine cations form significantly reorganized conformations with decreasing nanosheet thickness due to weakened van der Waals interactions. Because the orientations of organic components at the interface determine their electric properties and specifically the dipolar susceptibility, the resulting structure leads to striking changes in the SHG properties.

18.
Int J Syst Evol Microbiol ; 69(12): 3716-3722, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31592754

RESUMEN

A Gram-stain-negative, rod-shaped, non-motile, aerobic, catalase-negative and oxidase-positive bacterium, designated strain Sn-9-2T, was isolated from a cave soil sample collected from Tiandong cave, Guizhou Province, south-west PR China. Growth occurred at 15-40 °C (optimum, 30 °C), at pH 5.0-9.0 (optimum, pH 7.0-8.0) and with 0-1 % NaCl (w/v). The predominant respiration quinone was ubiquinone-10 (Q-10). The major cellular fatty acids were summed feature 8 (C18 : 1ω7c or C18 : 1ω6c; 83.9 %) and C16 : 0 (5.8 %). The major polar lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, phosphatidylglycerol, three unidentified phospholipids, two unidentified glycolipids, two unidentified polar lipids and one unidentified aminolipid. The DNA G+C content of strain Sn-9-2T was 67.5 mol%. Based on the results of 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain Sn-9-2T (MF958452) were identified as Aquabacter spiritensis (FR733686) DSM 9035T (97.5 %), Xanthobacter autorophicus (jgi.1053054) DSM 432T (97.2 %) and Xanthobacter tagetidis ATCC 700314T RCTF01000015 (96.9 %). The average nucleotide identity values were 78.0, 77.4 and 77.6 % and the digital DNA-DNA hybridization values were 21.8, 22.0 and 18.8 % between strain Sn-9-2T and A. spiritensis DSM 9035T, X. autotrophicus DSM 432T and X. tagetidis DSM 11105T, respectively. The DNA-DNA hybridization data indicated that strain Sn-9-2T represented a novel genomic species. On the basis of the results of phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA-DNA hybridization data, strain Sn-9-2T should represent a novel species of the genus Aquabacter, for which the name Aquabactercavernae sp. nov. is proposed. The type strain is Sn-9-2T (=KCTC 62308T=CCTCC AB 2018270T).


Asunto(s)
Alphaproteobacteria/clasificación , Cuevas/microbiología , Filogenia , Microbiología del Suelo , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
20.
Proc Natl Acad Sci U S A ; 110(35): 14492-7, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940322

RESUMEN

The growing world population and shrinkage of arable land demand yield improvement of rice, one of the most important staple crops. To elucidate the genetic basis of yield and uncover its associated loci in rice, we resequenced the core recombinant inbred lines of Liang-You-Pei-Jiu, the widely cultivated super hybrid rice, and constructed a high-resolution linkage map. We detected 43 yield-associated quantitative trait loci, of which 20 are unique. Based on the high-density physical map, the genome sequences of paternal variety 93-11 and maternal cultivar PA64s of Liang-You-Pei-Jiu were significantly improved. The large recombinant inbred line population combined with plentiful high-quality single nucleotide polymorphisms and insertions/deletions between parental genomes allowed us to fine-map two quantitative trait loci, qSN8 and qSPB1, and to identify days to heading8 and lax panicle1 as candidate genes, respectively. The quantitative trait locus qSN8 was further confirmed to be days to heading8 by a complementation test. Our study provided an ideal platform for molecular breeding by targeting and dissecting yield-associated loci in rice.


Asunto(s)
Genoma de Planta , Hibridación Genética , Oryza/genética , Recombinación Genética , Ligamiento Genético , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA