Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Mater ; 22(8): 999-1006, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37202488

RESUMEN

Ultralow thermal conductivity and fast ionic diffusion endow superionic materials with excellent performance both as thermoelectric converters and as solid-state electrolytes. Yet the correlation and interdependence between these two features remain unclear owing to a limited understanding of their complex atomic dynamics. Here we investigate ionic diffusion and lattice dynamics in argyrodite Ag8SnSe6 using synchrotron X-ray and neutron scattering techniques along with machine-learned molecular dynamics. We identify a critical interplay of the vibrational dynamics of mobile Ag and a host framework that controls the overdamping of low-energy Ag-dominated phonons into a quasi-elastic response, enabling superionicity. Concomitantly, the persistence of long-wavelength transverse acoustic phonons across the superionic transition challenges a proposed 'liquid-like thermal conduction' picture. Rather, a striking thermal broadening of low-energy phonons, starting even below 50 K, reveals extreme phonon anharmonicity and weak bonding as underlying features of the potential energy surface responsible for the ultralow thermal conductivity (<0.5 W m-1 K-1) and fast diffusion. Our results provide fundamental insights into the complex atomic dynamics in superionic materials for energy conversion and storage.

2.
Small ; 17(25): e2100915, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34032385

RESUMEN

Manipulations of carrier and phonon scatterings through hierarchical structures have been proved to be effective in improving thermoelectric performance. Previous efforts in GeTe-based materials mainly focus on simultaneously optimizing the carrier concentration and band structure. In this work, a synergistic strategy to tailor thermal and electrical transport properties of GeTe by combination with the scattering effects from both Ge vacancies and other defects is reported. The addition of Fe in GeTe-based compounds introduces the secondary phase of FeGe2 , synchronously increasing the concentration of Ge vacancies and arousing more Ge planar defects. These hierarchical defects contribute to a large scattering factor, leading to a significant enhancement of Seebeck coefficient and further a splendid power factor. Meanwhile, benefiting from the reinforced phonon scatterings by multiscale hierarchical structures, an extremely low lattice thermal conductivity is successfully achieved. With simultaneously optimized electrical and thermal transport properties, a maximum figure of merit, zT, value of 2.1 at 750 K and an average zT value of 1.5 in 400-800 K are realized in Ge0.875 Sb0.08 Te/1.5%FeGe2 . This work demonstrates that manipulation of hierarchical defects is an effective strategy to optimize the thermoelectric properties.

3.
Proc Natl Acad Sci U S A ; 114(40): 10548-10553, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923974

RESUMEN

Achieving higher carrier mobility plays a pivotal role for obtaining potentially high thermoelectric performance. In principle, the carrier mobility is governed by the band structure as well as by the carrier scattering mechanism. Here, we demonstrate that by manipulating the carrier scattering mechanism in n-type Mg3Sb2-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved. In this work, Fe, Co, Hf, and Ta are doped on the Mg site of Mg3.2Sb1.5Bi0.49Te0.01, where the ionized impurity scattering crosses over to mixed ionized impurity and acoustic phonon scattering. A significant improvement in Hall mobility from ∼16 to ∼81 cm2⋅V-1⋅s-1 is obtained, thus leading to a notably enhanced power factor of ∼13 µW⋅cm-1⋅K-2 from ∼5 µW⋅cm-1⋅K-2 A simultaneous reduction in thermal conductivity is also achieved. Collectively, a figure of merit (ZT) of ∼1.7 is obtained at 773 K in Mg3.1Co0.1Sb1.5Bi0.49Te0.01 The concept of manipulating the carrier scattering mechanism to improve the mobility should also be applicable to other material systems.

4.
J Am Chem Soc ; 140(46): 15883-15888, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30265000

RESUMEN

Optimization of carrier concentration plays an important role on maximizing thermoelectric performance. Existing efforts mainly focus on aliovalent doping, while intrinsic defects (e.g., vacancies) provide extra possibilities. Thermoelectric GeTe intrinsically forms in off-stoichiometric with Ge-vacancies and Ge-precipitates, leading to a hole concentration significantly higher than required. In this work, Sb2Te3 having a smaller cation-to-anion ratio, is used as a solvend to form solid solutions with GeTe for manipulating the vacancies. This is enabled by the fact that each substitution of 3 Ge2+ by only 2 Sb3+ creates 1 Ge vacancy, because of the overall 1:1 cation-to-anion ratio of crystallographic sites in the structure and by the charge neutrality. The increase in the overall Ge-vacancy concentration facilitates Ge-precipitates to be dissolved into the matrix for reducing the hole concentration. In a combination with known reduction in hole concentration by Pb/Ge-substitution, a full optimization on hole concentration is realized. In addition, the resultant high-concentration point defects including both vacancies and substitutions strongly scatter phonons and reduce the lattice thermal conductivity to the amorphous limit. These enable a significantly improved thermoelectric figure of merit at working temperatures of thermoelectric GeTe.

5.
J Am Chem Soc ; 140(47): 16190-16197, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30360620

RESUMEN

GeTe experiences phase transition between cubic and rhombohedral through distortion along the [111] direction. Cubic GeTe shares the similarity of a two-valence-band structure (high-energy L and low-energy Σ bands) with other cubic IV-VI semiconductors such as PbTe, SnTe, and PbSe, and all show a high thermoelectric performance due to a high band degeneracy. Very recently, the two valence bands were found to switch in energy in rhombohedral GeTe and to be split due to symmetry-breaking of the crystal structure. This enables the overall band degeneracy to be manipulated either by the control of symmetry-induced degeneracy or by the design of energy-aligned orbital degeneracy. Here, we show Sb-doping for optimizing carrier concentration and manipulating the degree of rhombohedral lattice distortion to maximize the band degeneracy and then electronic performance. In addition, Sb-doping significantly promotes the solubility of PbTe, enhancing the scattering of phonons by Ge/Pb substitutional defects for minimizing the lattice thermal conductivity. This successfully realizes a superior thermoelectric figure of merit, zT of >2 in both rhombohedral and cubic GeTe, demonstrating these alloys as top candidates for thermoelectric applications at T < 800 K. This work further sheds light on the importance of crystal structure symmetry manipulation for advancing thermoelectrics.

6.
Nature ; 473(7345): 66-9, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21544143

RESUMEN

Thermoelectric generators, which directly convert heat into electricity, have long been relegated to use in space-based or other niche applications, but are now being actively considered for a variety of practical waste heat recovery systems-such as the conversion of car exhaust heat into electricity. Although these devices can be very reliable and compact, the thermoelectric materials themselves are relatively inefficient: to facilitate widespread application, it will be desirable to identify or develop materials that have an intensive thermoelectric materials figure of merit, zT, above 1.5 (ref. 1). Many different concepts have been used in the search for new materials with high thermoelectric efficiency, such as the use of nanostructuring to reduce phonon thermal conductivity, which has led to the investigation of a variety of complex material systems. In this vein, it is well known that a high valley degeneracy (typically ≤6 for known thermoelectrics) in the electronic bands is conducive to high zT, and this in turn has stimulated attempts to engineer such degeneracy by adopting low-dimensional nanostructures. Here we demonstrate that it is possible to direct the convergence of many valleys in a bulk material by tuning the doping and composition. By this route, we achieve a convergence of at least 12 valleys in doped PbTe(1-x)Se(x) alloys, leading to an extraordinary zT value of 1.8 at about 850 kelvin. Band engineering to converge the valence (or conduction) bands to achieve high valley degeneracy should be a general strategy in the search for and improvement of bulk thermoelectric materials, because it simultaneously leads to a high Seebeck coefficient and high electrical conductivity.

7.
Proc Natl Acad Sci U S A ; 109(25): 9705-9, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22615358

RESUMEN

PbSe is a surprisingly good thermoelectric material due, in part, to its low thermal conductivity that had been overestimated in earlier measurements. The thermoelectric figure of merit, zT, can exceed 1 at high temperatures in both p-type and n-type PbSe, similar to that found in PbTe. While the p-type lead chalcogenides (PbSe and PbTe) benefit from the high valley degeneracy (12 or more at high temperature) of the valence band, the n-type versions are limited to a valley degeneracy of 4 in the conduction band. Yet the n-type lead chalcogenides achieve a zT nearly as high as the p-type lead chalcogenides. This effect can be attributed to the weaker electron-phonon coupling (lower deformation potential coefficient) in the conduction band as compared with that in the valence band, which leads to higher mobility of electrons compared to that of holes. This study of PbSe illustrates the importance of the deformation potential coefficient of the charge-carrying band as one of several key parameters to consider for band structure engineering and the search for high performance thermoelectric materials.

8.
Phys Chem Chem Phys ; 16(5): 1835-40, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24322836

RESUMEN

Recently a significant improvement in the thermoelectric performance of p-type ternary PbTe-PbSe and PbTe-PbS systems has been realized through alternating the electronic band structure and introducing nano-scale precipitates to bulk materials respectively. However, the quaternary system of PbTe-PbSe-PbS has received less attention. In the current work, we have excluded phase complexity by fabricating single phase sodium doped PbTe, alloyed with PbS up to its solubility limit which is extended to larger concentrations than in the ternary system of PbTe-PbS due to the presence of PbSe. We have presented a thermoelectric efficiency of approximately 1.6 which is superior to ternary PbTe-PbSe and PbTe-PbS at similar carrier concentrations and the binary PbTe, PbSe and PbS alloys. The quaternary system shows a larger Seebeck coefficient than the ternary PbTe-PbSe alloy, indicative of a wider band gap, valence band energy offset and heavier carriers effective mass. In addition, the existence of PbS in the alloy further reduces the lattice thermal conductivity originated from phonon scattering on solute atoms with high contrast atomic mass. Single phase quaternary PbTe-PbSe-PbS alloys are promising thermoelectric materials that provide high performance through adjusting the electronic band structure by regulating chemical composition.

9.
ACS Appl Mater Interfaces ; 16(24): 31826-31832, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38848288

RESUMEN

Thermoelectricity has been considered as the most important solution of generating electricity, particularly from low-grade heat below 300 °C. Despite efforts in recent years on exploring alternative materials to only commercialized Bi2Te3, the practical implementation of these new materials has been hindered by inadequate investigation into device design. Given that the utilization of weldable electrodes offers advantages in technical compatibility for a large-scale assembly of thermoelectric elements into modules, a thorough investigation into the potential of weldable metal electrodes at T < 300 °C is imperative. In this work, the diffusion of 11 kinds of thermoelectric materials in common weldable metals (Ni, Fe, Cu, and Ag) was screened. Ag is sorted out as a promising weldable electrode that can directly bond to thermoelectric Ag2Se in this temperature range, leading to a minimization of an interfacial contact resistivity down to 11 µΩ cm2 in a design of the Ag/Ag2Se/Ag structure. The conversion efficiency of ∼3% at ΔT of 95 K with an excellent stability indicates Ag2Se as a top alternative to n-type Bi2Te3 for low-grade heat recovery.

10.
Adv Mater ; : e2405299, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782368

RESUMEN

The conversion efficiency of thermoelectric generators that have to be operated under a temperature difference (ΔT) is mainly determined by material's dimensionless figure of merit (zT). However, maximization of zT at each temperature requires an optimization of carrier concentration (nopt) which strongly depends on the temperature and band parameters. Commonly utilized strategy of chemical doping usually enables a homogeneous carrier concentration throughout the material, leading the maximal zT to be achievable only within a narrow temperature range. In this work, a gradiently doping is successfully realized in PbTe1-xIx using a vertical gradient solidification technique, enabling a spatial gradient in carrier concentration that correspondingly optimizes zT at each portion of the material under its operating temperature. Such a gradient doping results in an extraordinary device efficiency of ≈14% at a ΔT of ≈500 K, corresponding to a ≈40% improvement as compared to that of homogeneous doping. Since directional solidification technique commonly enables gradient dopant concentrations in semiconductors, the resultant gradient carrier concentration is illustrated here as an effective approach for advancing thermoelectrics.

11.
J Mater Chem B ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904190

RESUMEN

The ability of thermoelectric materials to generate electricity in response to local temperature gradients makes them a potentially promising solution for the regulation of cellular functions and reconstruction of tissues. Biocompatibility of implants is a crucial attribute for the successful integration of thermoelectric techniques in biomedical applications. This work focuses on the in vitro and in vivo evaluation of biocompatibility for 12 typical chalcogenide thermoelectrics, which are composed of biocompatible elements. Ag2Se, SnSe, Bi2Se3, Bi2Te2.88Se0.12 and Bi2Te3, each with a released ion concentration lower than 10 ppm in extracts, exhibited favorable biocompatibility, including cell viability, adhesion, and hemocompatibility, as observed in initial in vitro assessments. Moreover, in vivo biocompatibility assessment, achieved by hematological and histopathological analyses in the rat subcutaneous model, further substantiated the biocompatibility of Ag2Se, Bi2Se3, and Bi2Te3, with each possessing superior thermoelectric performance at room temperature. This work offers robust evidence to promote Ag2Se, Bi2Se3, and Bi2Te3 as potential thermoelectric biomaterials, establishing a foundation for their future applications in biomedicine.

12.
J Am Chem Soc ; 135(2): 726-32, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23256607

RESUMEN

Inspired by the promising thermoelectric properties of chalcopyrite-like quaternary chalcogenides, here we describe the synthesis and characterization of the solid solution Cu(2)Zn(1-x)Fe(x)GeSe(4). Upon substitution of Zn with the isoelectronic Fe, no charge carriers are introduced in these intrinsic semiconductors. However, a change in lattice parameters, expressed in an elongation of the c/a lattice parameter ratio with minimal change in unit cell volume, reveals the existence of a three-stage cation restructuring process of Cu, Zn, and Fe. The resulting local anisotropic structural disorder leads to phonon scattering not normally observed, resulting in an effective approach to reduce the lattice thermal conductivity in this class of materials.

13.
ACS Appl Mater Interfaces ; 15(4): 6169-6176, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656557

RESUMEN

Historically, both p- and n-type PbTe show extraordinary thermoelectric figures of merit within 300-600 °C for power generation applications. A full realization of the potential of these high-performance thermoelectric materials on a device level largely depends on the electrical and thermal contacts with the metal electrodes. Chemical inertness with a slow diffusion could be an important criterion for the selection of metal electrodes. In this work, the diffusion of the total 12 potential metal electrodes in PbTe diffusion couples are focused on and sorted, suggesting the superiority of Co as an electrode for its low diffusion coefficient and interfacial contact resistivity, inertial to PbTe and compatibility in temperature for sintering. The strategy used in this work is believed to be applicable to the selection of electrodes for other thermoelectric materials.

14.
Nat Commun ; 13(1): 237, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017505

RESUMEN

Low-grade heat accounts for >50% of the total dissipated heat sources in industries. An efficient recovery of low-grade heat into useful electricity not only reduces the consumption of fossil-fuels but also releases the subsequential environmental-crisis. Thermoelectricity offers an ideal solution, yet low-temperature efficient materials have continuously been limited to Bi2Te3-alloys since the discovery in 1950s. Scarcity of tellurium and the strong property anisotropy cause high-cost in both raw-materials and synthesis/processing. Here we demonstrate cheap polycrystalline antimonides for even more efficient thermoelectric waste-heat recovery within 600 K than conventional tellurides. This is enabled by a design of Ni/Fe/Mg3SbBi and Ni/Sb/CdSb contacts for both a prevention of chemical diffusion and a low interfacial resistivity, realizing a record and stable module efficiency at a temperature difference of 270 K. In addition, the raw-material cost  to the output power ratio in this work is reduced to be only 1/15 of that of conventional Bi2Te3-modules.

15.
J Phys Condens Matter ; 34(6)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34727531

RESUMEN

Ternary chalcogenides have attracted great attention for their potential applications in thermoelectric devices. Here, we investigate the pressure and doping effects on the structural stability of BaAg2Te2using first-principles calculations. Imaginary frequencies are observed in the calculated phonon dispersions of the reportedPnmastructure, indicating thatPnmaBaAg2Te2is lattice dynamically unstable at 0 K. Although the imaginary phonon frequencies are small, we find that hydrostatic pressure cannot effectively stabilize the structure. Based on the soft mode at Γ point, a new monoclinic phase with a space group ofP21/cis proposed. Fromab initiomolecular dynamics simulations, theP21/cphase is predicted to transform to thePnmaphase at a low temperature below 100 K. Electron/hole doping effects on the lattice dynamical stability of thePnmaphase are also studied. It is found that hole doping is superior to electron doping in stabilizing thePnmaphase. Further study on the electrical transport properties of thePnmaphase reveals a higher performance alongbaxis than that along the other two directions. This work paves an avenue to better understand the structural stability and electrical transport properties of thermoelectric BaAg2Te2.

16.
Nat Commun ; 12(1): 3837, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158499

RESUMEN

Toward high-performance thermoelectric energy conversion, the electrons and holes must work jointly like two wheels of a cart: if not longitudinally, then transversely. The bipolar effect - the main performance restriction in the traditional longitudinal thermoelectricity, can be manipulated to be a performance enhancer in the transverse thermoelectricity. Here, we demonstrate this idea in semimetal Mg2Pb. At 30 K, a giant transverse thermoelectric power factor as high as 400 µWcm-1K-2 is achieved, a 3 orders-of-magnitude enhancement than the longitudinal configuration. The resultant specific heat pumping power is ~ 1 Wg-1, higher than those of existing techniques at 10~100 K. A large number of semimetals and narrow-gap semiconductors making poor longitudinal thermoelectrics due to severe bipolar effect are thus revived to fill the conspicuous gap of thermoelectric materials for solid-state applications.

17.
Adv Mater ; 33(42): e2102990, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34486174

RESUMEN

The emergence of artificial intelligence and the Internet of Things has led to a growing demand for wearable and maintenance-free power sources. The continual push toward lower operating voltages and power consumption in modern integrated circuits has made the development of devices powered by body heat finally feasible. In this context, thermoelectric (TE) materials have emerged as promising candidates for the effective conversion of body heat into electricity to power wearable devices without being limited by environmental conditions. Driven by rapid advances in processing technology and the performance of TE materials over the past two decades, wearable thermoelectric generators (WTEGs) have gradually become more flexible and stretchable so that they can be used on complex and dynamic surfaces. In this review, the functional materials, processing techniques, and strategies for the device design of different types of WTEGs are comprehensively covered. Wearable self-powered systems based on WTEGs are summarized, including multi-function TE modules, hybrid energy harvesting, and all-in-one energy devices. Challenges in organic TE materials, interfacial engineering, and assessments of device performance are discussed, and suggestions for future developments in the area are provided. This review will promote the rapid implementation of wearable TE materials and devices in self-powered electronic systems.

18.
Sci Adv ; 7(19)2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33962945

RESUMEN

GeTe alloys have recently attracted wide attention as efficient thermoelectrics. In this work, a single-leg thermoelectric device with a conversion efficiency as high as 14% under a temperature gradient of 440 K was fabricated on the basis of GeTe-Cu2Te-PbSe alloys, which show a peak thermoelectric figure of merit (zT) > 2.5 and an average zT of 1.8 within working temperatures. The high performance of the material is electronically attributed to the carrier concentration optimization and thermally due to the strengthened phonon scattering, the effects of which all originate from the defects in the alloys. A design of Ag/SnTe/GeTe contact successfully enables both a prevention of chemical diffusion and an interfacial contact resistivity of 8 microhm·cm2 for the realization of highly efficient devices with a good service stability/durability. Not only the material's high performance but also the device's high efficiency demonstrated the extraordinariness of GeTe alloys for efficient thermoelectric waste-heat recovery.

19.
Nanoscale ; 12(37): 19165-19169, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32959858

RESUMEN

Defect engineering is an effective route to improve the performance of thermoelectric materials, including Sb doped PbSe, but the formation mechanism of defects remains unclear. In the thermoelectric material Pb1-xSb2x/3Se (0 < x ≤ 0.07), a large number of dislocations have been reported, and they enhance intermediate-frequency phonon scattering, thereby improving the zT value. However, the microstructural origin of dislocations remains unclear. In this paper, via a combination of atomic resolution scanning transmission electron microscopy and density functional theory, we successfully revealed the microstructure of Pb1-xSb2x/3Se (x = 0-0.07) for in-depth understanding of the formation mechanism of dislocations. Plenty of zinc blende (ZB) nanostructures are found in the PbSe matrix with a rock salt (RS) structure, and the theoretical calculations confirm its viability from the point of view of formation energy. A similar ZB structure is identified in the dislocation cores of Sb-doped materials as well, and thus the formation mechanism of dislocations is discussed for this PbSe system. This result provides important guidance to understand the structural evolution in compounds with a RS structure, especially in high-performance lead chalcogenide thermoelectric materials.

20.
Sci Adv ; 6(46)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33188018

RESUMEN

Development of thermoelectrics usually involves trial-and-error investigations, including time-consuming synthesis and measurements. Here, we identify the electronic quality factor BE for determining the maximum thermoelectric power factor, which can be conveniently estimated by a single measurement of Seebeck coefficient and electrical conductivity of only one sample, not necessarily optimized, at an arbitrary temperature. We demonstrate that thousands of experimental measurements in dozens of materials can all be described by a universal curve and a single material parameter BE for each class of materials. Furthermore, any deviation in BE with temperature or doping indicated new effects such as band convergence or additional scattering. This makes BE a powerful tool for evaluating and guiding the development of thermoelectrics. We demonstrate the power of BE to show both p-type GeTe alloys and n-type Mg3SbBi alloys as highly competitive materials, at near room temperature, to state-of-the-art Bi2Te3 alloys used in nearly all commercial applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA