RESUMEN
With the generation of spatially resolved transcriptomics of microbial biofilms, computational tools can be used to integrate this data to elucidate the multi-scale mechanisms controlling heterogeneous biofilm metabolism. This work presents a Multi-scale model of Metabolism In Cellular Systems (MiMICS) which is a computational framework that couples a genome-scale metabolic network reconstruction (GENRE) with Hybrid Automata Library (HAL), an existing agent-based model and reaction-diffusion model platform. A key feature of MiMICS is the ability to incorporate multiple -omics-guided metabolic models, which can represent unique metabolic states that yield different metabolic parameter values passed to the extracellular models. We used MiMICS to simulate Pseudomonas aeruginosa regulation of denitrification and oxidative stress metabolism in hypoxic and nitric oxide (NO) biofilm microenvironments. Integration of P. aeruginosa PA14 biofilm spatial transcriptomic data into a P. aeruginosa PA14 GENRE generated four PA14 metabolic model states that were input into MiMICS. Characteristic of aerobic, denitrification, and oxidative stress metabolism, the four metabolic model states predicted different oxygen, nitrate, and NO exchange fluxes that were passed as inputs to update the agent's local metabolite concentrations in the extracellular reaction-diffusion model. Individual bacterial agents chose a PA14 metabolic model state based on a combination of stochastic rules, and agents sensing local oxygen and NO. Transcriptome-guided MiMICS predictions suggested microscale denitrification and oxidative stress metabolic heterogeneity emerged due to local variability in the NO biofilm microenvironment. MiMICS accurately predicted the biofilm's spatial relationships between denitrification, oxidative stress, and central carbon metabolism. As simulated cells responded to extracellular NO, MiMICS revealed dynamics of cell populations heterogeneously upregulating reactions in the denitrification pathway, which may function to maintain NO levels within non-toxic ranges. We demonstrated that MiMICS is a valuable computational tool to incorporate multiple -omics-guided metabolic models to mechanistically map heterogeneous microbial metabolic states to the biofilm microenvironment.
Asunto(s)
Biopelículas , Modelos Biológicos , Estrés Oxidativo , Pseudomonas aeruginosa , Transcriptoma , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Estrés Oxidativo/fisiología , Transcriptoma/genética , Biología Computacional , Redes y Vías Metabólicas/genética , Óxido Nítrico/metabolismo , Simulación por Computador , DesnitrificaciónRESUMEN
The human body represents a collection of interacting systems that range in scale from nanometers to meters. Investigations from a systems perspective focus on how the parts work together to enact changes across spatial scales, and further our understanding of how systems function and fail. Here, we highlight systems approaches presented at the 2022 Summer Biomechanics, Bio-engineering, and Biotransport Conference in the areas of solid mechanics; fluid mechanics; tissue and cellular engineering; biotransport; and design, dynamics, and rehabilitation; and biomechanics education. Systems approaches are yielding new insights into human biology by leveraging state-of-the-art tools, which could ultimately lead to more informed design of therapies and medical devices for preventing and treating disease as well as rehabilitating patients using strategies that are uniquely optimized for each patient. Educational approaches can also be designed to foster a foundation of systems-level thinking.
Asunto(s)
Bioingeniería , Análisis de Sistemas , Humanos , Fenómenos Biomecánicos , BiofisicaRESUMEN
The purinergic receptor P2Y2 binds ATP to control chemotaxis of myeloid cells, and global P2Y2 receptor knockout mice are protected in models of acute inflammation. Chronic inflammation mediated by macrophages and other immune cells in adipose tissue contributes to the development of insulin resistance. Here, we investigate whether mice lacking P2Y2 receptors on myeloid cells are protected against acute and chronic inflammation. Wild-type mice were transplanted with either wild-type or P2Y2 receptor null bone marrow and treated with a sublethal dose of endotoxin as a model of acute inflammation, or fed a high-fat diet to induce obesity and insulin resistance as a model of chronic inflammation. P2Y2-/- chimeric mice were protected against acute inflammation. However, high-fat diet feeding induced comparable inflammation and insulin resistance in both WT and P2Y2-/- chimeric mice. Of note, confocal microscopy revealed significantly fewer crown-like structures, assemblies of macrophages around adipocytes, in P2Y2-/- chimeric mice compared to WT chimeric mice. We conclude that P2Y2 receptors on myeloid cells are important in mediating acute inflammation but are dispensable for the development of whole body insulin resistance in diet-induced obese mice.
Asunto(s)
Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Células Mieloides/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Animales , Dieta Alta en Grasa , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Endothelial cells play significant roles in conditioning tissues after injury by the production and secretion of angiocrine factors. At least two distinct subsets of monocytes, CD45(+)CD11b(+)Gr1(+)Ly6C(+) inflammatory and CD45(+)CD11b(+)Gr1(-)Ly6C(-) anti-inflammatory monocytes, respond differentially to these angiocrine factors and promote pathogen/debris clearance and arteriogenesis/tissue regeneration, respectively. We demonstrate here that local sphingosine 1-phosphate receptor 3 (S1P3) agonism recruits anti-inflammatory monocytes to remodeling vessels. Poly(lactic-co-glycolic acid) thin films were used to deliver FTY720, an S1P1/3 agonist, to inflamed and ischemic tissues, which resulted in a reduction in proinflammatory cytokine secretion and an increase in regenerative cytokine secretion. The altered balance of cytokine secretion results in preferential recruitment of anti-inflammatory monocytes from circulation. The chemotaxis of these cells, which express more S1P3 than inflammatory monocytes, toward SDF-1α was also enhanced with FTY720 treatment, but not in S1P3 knockout cells. FTY720 delivery enhanced arteriolar diameter expansion and increased length density of the local vasculature. This work establishes a role for S1P receptor signaling in the local conditioning of tissues by angiocrine factors that preferentially recruit regenerative monocytes that can enhance healing outcomes, tissue regeneration, and biomaterial implant functionality.
Asunto(s)
Monocitos/fisiología , Neovascularización Fisiológica/fisiología , Glicoles de Propileno/farmacología , Prótesis e Implantes/efectos adversos , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Ingeniería de Tejidos/métodos , Lesiones del Sistema Vascular/tratamiento farmacológico , Análisis de Varianza , Animales , Western Blotting , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Citocinas/metabolismo , Cartilla de ADN/genética , Portadores de Fármacos , Clorhidrato de Fingolimod , Citometría de Flujo , Humanos , Inmunohistoquímica , Ácido Láctico , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microvasos/citología , Monocitos/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Glicoles de Propileno/administración & dosificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Lisoesfingolípidos/agonistas , Esfingosina/administración & dosificación , Esfingosina/farmacología , Lesiones del Sistema Vascular/etiologíaRESUMEN
Chemotherapy has been used to inhibit cancer growth for decades, but emerging evidence shows it can affect the tumor stroma, unintentionally promoting cancer malignancy. After treatment of primary tumors, remaining drugs drain via lymphatics. Though all drugs interact with the lymphatics, we know little of their impact on them. Here, we show a previously unknown effect of platinums, a widely used class of chemotherapeutics, to directly induce systemic lymphangiogenesis and activation. These changes are dose-dependent, long-lasting, and occur in healthy and cancerous tissue in multiple mouse models of breast cancer. We found similar effects in human ovarian and breast cancer patients whose treatment regimens included platinums. Carboplatin treatment of healthy mice prior to mammary tumor inoculation increased cancer metastasis as compared to no pre-treatment. These platinum-induced phenomena could be blocked by VEGFR3 inhibition. These findings have implications for cancer patients receiving platinums and may support the inclusion of anti-VEGFR3 therapy into treatment regimens or differential design of treatment regimens to alter these potential effects.
RESUMEN
OBJECTIVE: Defective glucose uptake in adipocytes leads to impaired metabolic homeostasis and insulin resistance, hallmarks of type 2 diabetes. Extracellular ATP-derived nucleotides and nucleosides are important regulators of adipocyte function, but the pathway for controlled ATP release from adipocytes is unknown. Here, we investigated whether Pannexin 1 (Panx1) channels control ATP release from adipocytes and contribute to metabolic homeostasis. METHODS: We assessed Panx1 functionality in cultured 3T3-L1 adipocytes and in adipocytes isolated from murine white adipose tissue by measuring ATP release in response to known activators of Panx1 channels. Glucose uptake in cultured 3T3-L1 adipocytes was measured in the presence of Panx1 pharmacologic inhibitors and in adipocytes isolated from white adipose tissue from wildtype (WT) or adipocyte-specific Panx1 knockout (AdipPanx1 KO) mice generated in our laboratory. We performed in vivo glucose uptake studies in chow fed WT and AdipPanx1 KO mice and assessed insulin resistance in WT and AdipPanx1 KO mice fed a high fat diet for 12 weeks. Panx1 channel function was assessed in response to insulin by performing electrophysiologic recordings in a heterologous expression system. Finally, we measured Panx1 mRNA in human visceral adipose tissue samples by qRT-PCR and compared expression levels with glucose levels and HOMA-IR measurements in patients. RESULTS: Our data show that adipocytes express functional Pannexin 1 (Panx1) channels that can be activated to release ATP. Pharmacologic inhibition or selective genetic deletion of Panx1 from adipocytes decreased insulin-induced glucose uptake in vitro and in vivo and exacerbated diet-induced insulin resistance in mice. Further, we identify insulin as a novel activator of Panx1 channels. In obese humans Panx1 expression in adipose tissue is increased and correlates with the degree of insulin resistance. CONCLUSIONS: We show that Panx1 channel activity regulates insulin-stimulated glucose uptake in adipocytes and thus contributes to control of metabolic homeostasis.
RESUMEN
BACKGROUND: Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of nitric oxide-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF. METHODS AND RESULTS: We demonstrated that systemic administration of endogenous nitric oxide donor S-nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, as well as the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis (muscle creatine kinase [MCK]-EcSOD) in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF (α-myosin heavy chain-calsequestrin), MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced HF. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria, and vascular rarefaction in skeletal muscle. CONCLUSIONS: EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF.