Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Psychiatry ; 22(1): 56-67, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26976041

RESUMEN

Placental transfer of Δ9-tetrahydrocannabinol (THC) during pregnancy has the potential to interfere with endogenous cannabinoid (CB) regulation of fetal nervous system development in utero. Here we examined the effect of maternal CB intake on mouse hippocampal interneurons largely focusing on cholecystokinin-expressing interneurons (CCK-INTs), a prominent CB subtype-1 receptor (CB1R) expressing neuronal population throughout development. Maternal treatment with THC or the synthetic CB1R agonist WIN55,212-2 (WIN) produced a significant loss of CCK-INTs in the offspring. Further, residual CCK-INTs in animals prenatally treated with WIN displayed decreased dendritic complexity. Consistent with these anatomical deficits, pups born to CB-treated dams exhibited compromised CCK-INT-mediated feedforward and feedback inhibition. Moreover, pups exposed to WIN in utero lacked constitutive CB1R-mediated suppression of inhibition from residual CCK-INTs and displayed altered social behavior. Our findings add to a growing list of potential cell/circuit underpinnings that may underlie cognitive impairments in offspring of mothers that abuse marijuana during pregnancy.


Asunto(s)
Dronabinol/efectos adversos , Sistema Nervioso/efectos de los fármacos , Animales , Benzoxazinas , Cannabinoides/efectos adversos , Cannabinoides/metabolismo , Cannabis/efectos adversos , Cannabis/embriología , Colecistoquinina , Dronabinol/metabolismo , Endocannabinoides/efectos adversos , Endocannabinoides/metabolismo , Femenino , Hipocampo/efectos de los fármacos , Interneuronas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Morfolinas , Naftalenos , Sistema Nervioso/embriología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Receptor Cannabinoide CB1/metabolismo , Receptores de Cannabinoides , Conducta Social
3.
J Physiol ; 587(Pt 18): 4441-54, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19635819

RESUMEN

Synaptic development is an activity-dependent process utilizing coordinated network activity to drive synaptogenesis and subsequent refinement of immature connections. Hippocampal CA3 pyramidal neurons (PYRs) exhibit intense burst firing (BF) early in development, concomitant with the period of mossy fibre (MF) development. However, whether developing MF-PYR synapses utilize PYR BF to promote MF synapse maturation remains unknown. Recently, we demonstrated that transient tonic depolarization of postsynaptic PYRs induces a persistent postsynaptic form of long-term depression (depolarization-induced long-term depression, DiLTD) at immature MF-PYR synapses. DiLTD induction is NMDAR independent but does require postsynaptic Ca(2+) influx through L-type voltage gated Ca(2+) channels (L-VGCCs), and is expressed as a reduction in AMPAR function through the loss of GluR2-lacking AMPARs present at immature MF-PYR synapses. Here we examined whether more physiologically relevant phasic L-VGCC activation by PYR action potential (AP) BF activity patterns can trigger DiLTD. Using combined electrophysiological and Ca(2+) imaging approaches we demonstrate that PYR BF effectively drives L-VGCC activation and that brief periods of repetitive PYR BF, produced by direct current injection or intrinsic network activity induces NMDAR-independent LTD by promoting Ca(2+) influx through the activated L-VGCCs. This BF induced LTD, just like DiLTD, is specific for developing MF-PYR synapses, is PICK1 dependent, and is expressed postsynaptically. Our results demonstrate that DiLTD can be induced by phasic L-VGCC activation driven by PYR BF, suggesting the engagement of natural PYR network activity patterns for MF synapse maturation.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Fibras Musgosas del Hipocampo/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Potenciales Sinápticos/fisiología , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL
4.
Neuron ; 26(2): 443-55, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10839362

RESUMEN

Neuregulins (NRGs) and their receptors, the ErbB protein tyrosine kinases, are essential for neuronal development, but their functions in the adult CNS are unknown. We report that ErbB4 is enriched in the postsynaptic density (PSD) and associates with PSD-95. Heterologous expression of PSD-95 enhanced NRG activation of ErbB4 and MAP kinase. Conversely, inhibiting expression of PSD-95 in neurons attenuated NRG-mediated activation of MAP kinase. PSD-95 formed a ternary complex with two molecules of ErbB4, suggesting that PSD-95 facilitates ErbB4 dimerization. Finally, NRG suppressed induction of long-term potentiation in the hippocampal CA1 region without affecting basal synaptic transmission. Thus, NRG signaling may be synaptic and regulated by PSD-95. A role of NRG signaling in the adult CNS may be modulation of synaptic plasticity.


Asunto(s)
Encéfalo/fisiología , Receptores ErbB/fisiología , Proteínas del Tejido Nervioso/fisiología , Neurregulinas/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Encéfalo/citología , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Estimulación Eléctrica , Receptores ErbB/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular , Potenciación a Largo Plazo/efectos de los fármacos , Proteínas de la Membrana , Proteínas del Tejido Nervioso/metabolismo , Neurregulinas/farmacología , Neuronas/metabolismo , Ratas , Receptor ErbB-4 , Distribución Tisular , Levaduras
5.
Neuron ; 29(2): 485-96, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11239437

RESUMEN

Long-term potentiation (LTP) is an activity-dependent enhancement of synaptic efficacy, considered a model of learning and memory. The biochemical cascade producing LTP requires activation of Src, which upregulates the function of NMDA receptors (NMDARs), but how Src becomes activated is unknown. Here, we show that the focal adhesion kinase CAKbeta/Pyk2 upregulated NMDAR function by activating Src in CA1 hippocampal neurons. Induction of LTP was prevented by blocking CAKbeta/Pyk2, and administering CAKbeta/Pyk2 intracellularly mimicked and occluded LTP. Tyrosine phosphorylation of CAKbeta/Pyk2 and its association with Src was increased by stimulation that produced LTP. Finally, CAKbeta/Pyk2-stimulated enhancement of synaptic AMPA responses was prevented by blocking NMDARS, chelating intracellular Ca(2+), or blocking Src. Thus, activating CAKbeta/Pyk2 is required for inducing LTP and may depend upon downstream activation of Src to upregulate NMDA receptors.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Proteínas Tirosina Quinasas/metabolismo , Células Piramidales/fisiología , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Familia-src Quinasas/fisiología , Animales , Quinasa 2 de Adhesión Focal , Hipocampo/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología , Familia-src Quinasas/metabolismo
6.
Nat Commun ; 8(1): 152, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28751664

RESUMEN

Appropriate integration of GABAergic interneurons into nascent cortical circuits is critical for ensuring normal information processing within the brain. Network and cognitive deficits associated with neurological disorders, such as schizophrenia, that result from NMDA receptor-hypofunction have been mainly attributed to dysfunction of parvalbumin-expressing interneurons that paradoxically express low levels of synaptic NMDA receptors. Here, we reveal that throughout postnatal development, thalamic, and entorhinal cortical inputs onto hippocampal neurogliaform cells are characterized by a large NMDA receptor-mediated component. This NMDA receptor-signaling is prerequisite for developmental programs ultimately responsible for the appropriate long-range AMPAR-mediated recruitment of neurogliaform cells. In contrast, AMPAR-mediated input at local Schaffer-collateral synapses on neurogliaform cells remains normal following NMDA receptor-ablation. These afferent specific deficits potentially impact neurogliaform cell mediated inhibition within the hippocampus and our findings reveal circuit loci implicating this relatively understudied interneuron subtype in the etiology of neurodevelopmental disorders characterized by NMDA receptor-hypofunction.Proper brain function depends on the correct assembly of excitatory and inhibitory neurons into neural circuits. Here the authors show that during early postnatal development in mice, NMDAR signaling via activity of long-range synaptic inputs onto neurogliaform cells is required for their appropriate integration into the hippocampal circuitry.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Proteínas del Tejido Nervioso/genética , Neuroglía/metabolismo , Plasticidad Neuronal/genética , Neuronas Aferentes/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Animales , Región CA3 Hipocampal/crecimiento & desarrollo , Región CA3 Hipocampal/metabolismo , Dendritas/metabolismo , Corteza Entorrinal/metabolismo , Hipocampo/crecimiento & desarrollo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Tálamo/metabolismo
7.
J Neurosci ; 19(21): RC37, 1999 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-10531471

RESUMEN

The protein-tyrosine kinase Src is known to potentiate the function of NMDA receptors, which is necessary for the induction of long-term potentiation in the hippocampus. With recombinant receptors composed of NR1-1a/NR2A or NR1-1a/2B subunits, Src reduces voltage-independent inhibition by the divalent cation Zn2+. Thereby the function of recombinant NMDA receptors is potentiated by Src only when the Zn2+ level is sufficient to cause tonic inhibition. Here we investigated whether the Src-induced potentiation of NMDA receptor function in neurons is caused by reducing voltage-independent Zn2+ inhibition. Whereas chelating extracellular Zn2+ blocked the Src-induced potentiation of NR1-1a/2A receptors, we found that Zn2+ chelation did not affect the potentiation of NMDA receptor (NMDAR) currents by Src applied into hippocampal CA1 or CA3 neurons. Moreover, Src did not alter the Zn2+ concentration-inhibition relationship for NMDAR currents in CA1 or CA3 neurons. Also, chelating extracellular Zn2+ did not prevent the upregulation of NMDA single-channel activity by endogenous Src in membrane patches from spinal dorsal horn neurons. Taking these results together we conclude that Src-induced potentiation of NMDAR currents is not mediated by reducing Zn2+ inhibition in hippocampal and dorsal horn neurons.


Asunto(s)
Hipocampo/fisiología , Potenciales de la Membrana/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Zinc/farmacología , Familia-src Quinasas/fisiología , Animales , Electrofisiología , Hipocampo/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos
8.
Brain Res ; 753(1): 120-7, 1997 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-9125438

RESUMEN

Mesencephalic trigeminal neurons are primary sensory neurons which have cell somata located within the brain stem. In spite of the presence of synaptic terminals on and around the cell somata, applications of a variety of neurotransmitter substances in earlier studies have failed to demonstrate responses. Using intracellular recording in a brain slice preparation, we have observed prominent depolarizations and decreases in input resistance in response to applications of gamma-aminobutyric acid (GABA) in most recorded mesencephalic trigeminal neurons. Those cells failing to respond were located deeply within the slice, and the low responsiveness was shown to be related to uptake of GABA in the slice. The responses were direct, since they remained during perfusion with a low calcium, high magnesium solution that blocks synaptic transmission. The responses were mimicked by the GABA(A) receptor agonist isoguvacine, and blocked by GABA(A) receptor antagonists. The GABA(B) receptor agonist baclofen evoked no changes in membrane potential or input resistance in neurons exhibiting depolarizations with GABA application. Tests of neuronal excitability during GABA applications indicated that the excitatory effects of the depolarization prevail over the depressant effects of the increase in membrane conductance. In situ hybridization histochemistry indicated that the GABA(A) receptors in Me5 cells are comprised of alpha2, beta2 and gamma2 subunits.


Asunto(s)
Neuronas Aferentes/efectos de los fármacos , Núcleos del Trigémino/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología , Animales , Femenino , Hibridación in Situ , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratas , Ratas Wistar , Núcleos del Trigémino/citología
9.
Can J Physiol Pharmacol ; 76(9): 900-8, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10066141

RESUMEN

Mesencephalic trigeminal (MeV) neurons are primary sensory neurons of which the cell soma is located within the brainstem, and is associated with synaptic contacts. In previous studies it has been reported that these cells are resistant to kainic acid excitotoxicity, and have little or no responsiveness to exogenously applied glutamate or selective agonists. In an in vitro slice preparation with intracellular recording, we have found that these cells respond to pressure-applied glutamate, N-methyl-D-aspartic acid (NMDA), kainate (KA), and (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). The kainate and AMPA responses appear to be mediated by different receptors, at least in part, since they exhibit differing sensitivity to an AMPA receptor selective antagonist. The agonists generally evoke larger responses than glutamate and exhibit a long-duration desensitization requiring approximately 10 min for full recovery. Some cross-desensitization between the glutamate agonists is also observed. Mesencephalic trigeminal neurons exhibit high-frequency oscillatory activity during depolarizations that approach threshold potentials, and these could combine with transmitter-induced depolarizations to enhance the excitability of these cells. Previous reports of nonsensitivity to glutamate and to kainate excitotoxicity are attributable to relatively small responses, and to the desensitization expressed by these neurons.


Asunto(s)
Aminoácidos Excitadores/farmacología , Núcleos del Trigémino/efectos de los fármacos , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Ácido Kaínico/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Núcleos del Trigémino/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA