Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Redox Biol ; 63: 102755, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224696

RESUMEN

During cardiac ischemia-reperfusion, excess reactive oxygen species can damage mitochondrial, cellular and organ function. Here we show that cysteine oxidation of the mitochondrial protein Opa1 contributes to mitochondrial damage and cell death caused by oxidative stress. Oxy-proteomics of ischemic-reperfused hearts reveal oxidation of the C-terminal C786 of Opa1 and treatment of perfused mouse hearts, adult cardiomyocytes, and fibroblasts with H2O2 leads to the formation of a reduction-sensitive ∼180 KDa Opa1 complex, distinct from the ∼270 KDa one antagonizing cristae remodeling. This Opa1 oxidation process is curtailed by mutation of C786 and of the other 3 Cys residues of its C-terminal domain (Opa1TetraCys). When reintroduced in Opa1-/- cells, Opa1TetraCys is not efficiently processed into short Opa1TetraCys and hence fails to fuse mitochondria. Unexpectedly, Opa1TetraCys restores mitochondrial ultrastructure in Opa1-/- cells and protects them from H2O2-induced mitochondrial depolarization, cristae remodeling, cytochrome c release and cell death. Thus, preventing the Opa1 oxidation occurring during cardiac ischemia-reperfusion reduces mitochondrial damage and cell death induced by oxidative stress independent of mitochondrial fusion.


Asunto(s)
Enfermedad de la Arteria Coronaria , Daño por Reperfusión Miocárdica , Atrofia Óptica Autosómica Dominante , Animales , Ratones , Muerte Celular , Cisteína/metabolismo , Peróxido de Hidrógeno , Daño por Reperfusión Miocárdica/metabolismo , Atrofia Óptica Autosómica Dominante/metabolismo , Estrés Oxidativo
2.
Cell Death Dis ; 14(4): 241, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019897

RESUMEN

Drug resistance limits the efficacy of chemotherapy and targeted cancer treatments, calling for the identification of druggable targets to overcome it. Here we show that the mitochondria-shaping protein Opa1 participates in resistance against the tyrosine kinase inhibitor gefitinib in a lung adenocarcinoma cell line. Respiratory profiling revealed that oxidative metabolism was increased in this gefitinib-resistant lung cancer cell line. Accordingly, resistant cells depended on mitochondrial ATP generation, and their mitochondria were elongated with narrower cristae. In the resistant cells, levels of Opa1 were increased and its genetic or pharmacological inhibition reverted the mitochondrial morphology changes and sensitized them to gefitinib-induced cytochrome c release and apoptosis. In vivo, the size of gefitinib-resistant lung orthotopic tumors was reduced when gefitinib was combined with the specific Opa1 inhibitor MYLS22. The combo gefitinib-MYLS22 treatment increased tumor apoptosis and reduced its proliferation. Thus, the mitochondrial protein Opa1 participates in gefitinib resistance and can be targeted to overcome it.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Gefitinib/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos , Línea Celular Tumoral , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/farmacología , Mitocondrias/metabolismo , Pulmón/metabolismo , Proliferación Celular , Apoptosis , Antineoplásicos/farmacología , GTP Fosfohidrolasas/metabolismo
3.
Cell Metab ; 31(5): 987-1003.e8, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32315597

RESUMEN

While endothelial cell (EC) function is influenced by mitochondrial metabolism, the role of mitochondrial dynamics in angiogenesis, the formation of new blood vessels from existing vasculature, is unknown. Here we show that the inner mitochondrial membrane mitochondrial fusion protein optic atrophy 1 (OPA1) is required for angiogenesis. In response to angiogenic stimuli, OPA1 levels rapidly increase to limit nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) signaling, ultimately allowing angiogenic genes expression and angiogenesis. Endothelial Opa1 is indeed required in an NFκB-dependent pathway essential for developmental and tumor angiogenesis, impacting tumor growth and metastatization. A first-in-class small molecule-specific OPA1 inhibitor confirms that EC Opa1 can be pharmacologically targeted to curtail tumor growth. Our data identify Opa1 as a crucial component of physiological and tumor angiogenesis.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Transducción de Señal , Pez Cebra
4.
Cell Chem Biol ; 25(3): 231-233, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29547712

RESUMEN

Despite the significance of mitochondrial dynamics in many diseases, drugs that modulate it are lacking. In this issue of Cell Chemical Biology, Miret-Casals et al. (2018) use a phenotypic high-throughput screen to discover a pro-fusion role for the anti-inflammatory drug Leflunomide, paving the way to screen for mitochondrial pro-fusion drug candidates.


Asunto(s)
Leflunamida , Dinámicas Mitocondriales , Antiinflamatorios , Mitocondrias , Pirimidinas
5.
Nat Commun ; 9(1): 3399, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143614

RESUMEN

It is unclear how the mitochondrial fusion protein Optic atrophy 1 (OPA1), which inhibits cristae remodeling, protects from mitochondrial dysfunction. Here we identify the mitochondrial F1Fo-ATP synthase as the effector of OPA1 in mitochondrial protection. In OPA1 overexpressing cells, the loss of proton electrochemical gradient caused by respiratory chain complex III inhibition is blunted and this protection is abolished by the ATP synthase inhibitor oligomycin. Mechanistically, OPA1 and ATP synthase can interact, but recombinant OPA1 fails to promote oligomerization of purified ATP synthase reconstituted in liposomes, suggesting that OPA1 favors ATP synthase oligomerization and reversal activity by modulating cristae shape. When ATP synthase oligomers are genetically destabilized by silencing the key dimerization subunit e, OPA1 is no longer able to preserve mitochondrial function and cell viability upon complex III inhibition. Thus, OPA1 protects mitochondria from respiratory chain inhibition by stabilizing cristae shape and favoring ATP synthase oligomerization.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Antimicina A/farmacología , Supervivencia Celular/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , GTP Fosfohidrolasas/genética , Immunoblotting , Inmunoprecipitación , Ratones , Microscopía Electrónica de Transmisión , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA