Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 30(14): 1305-1320, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-33909041

RESUMEN

Nemaline myopathy, a disease of the actin-based thin filament, is one of the most frequent congenital myopathies. To date, no specific therapy is available to treat muscle weakness in nemaline myopathy. We tested the ability of tirasemtiv, a fast skeletal troponin activator that targets the thin filament, to augment muscle force-both in vivo and in vitro-in a nemaline myopathy mouse model with a mutation (H40Y) in Acta1. In Acta1H40Y mice, treatment with tirasemtiv increased the force response of muscles to submaximal stimulation frequencies. This resulted in a reduced energetic cost of force generation, which increases the force production during a fatigue protocol. The inotropic effects of tirasemtiv were present in locomotor muscles and, albeit to a lesser extent, in respiratory muscles, and they persisted during chronic treatment, an important finding as respiratory failure is the main cause of death in patients with congenital myopathy. Finally, translational studies on permeabilized muscle fibers isolated from a biopsy of a patient with the ACTA1H40Y mutation revealed that at physiological Ca2+ concentrations, tirasemtiv increased force generation to values that were close to those generated in muscle fibers of healthy subjects. These findings indicate the therapeutic potential of fast skeletal muscle troponin activators to improve muscle function in nemaline myopathy due to the ACTA1H40Y mutation, and future studies should assess their merit for other forms of nemaline myopathy and for other congenital myopathies.


Asunto(s)
Actinas , Miopatías Nemalínicas , Actinas/genética , Animales , Humanos , Imidazoles , Ratones , Músculo Esquelético/patología , Mutación , Miopatías Nemalínicas/tratamiento farmacológico , Miopatías Nemalínicas/genética , Pirazinas/uso terapéutico
2.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834400

RESUMEN

Spinal muscular atrophy (SMA) is a genetic disorder characterized by the loss of spinal motor neurons leading to muscle weakness and respiratory failure. Mitochondrial dysfunctions are found in the skeletal muscle of patients with SMA. For obvious ethical reasons, the diaphragm muscle is poorly studied, notwithstanding the very important role that respiratory involvement plays in SMA mortality. The main goal of this study was to investigate diaphragm functionality and the underlying molecular adaptations in SMNΔ7 mice, a mouse model that exhibits symptoms similar to that of patients with intermediate type II SMA. Functional, biochemical, and molecular analyses on isolated diaphragm were performed. The obtained results suggest the presence of an intrinsic energetic imbalance associated with mitochondrial dysfunction and a significant accumulation of reactive oxygen species (ROS). In turn, ROS accumulation can affect muscle fatigue, cause diaphragm wasting, and, in the long run, respiratory failure in SMNΔ7 mice. Exposure to the antioxidant molecule ergothioneine leads to the functional recovery of the diaphragm, confirming the presence of mitochondrial impairment and redox imbalance. These findings suggest the possibility of carrying out a dietary supplementation in SMNΔ7 mice to preserve their diaphragm function and increase their lifespan.


Asunto(s)
Atrofia Muscular Espinal , Insuficiencia Respiratoria , Humanos , Ratones , Animales , Diafragma , Especies Reactivas de Oxígeno , Neuronas Motoras , Músculo Esquelético , Modelos Animales de Enfermedad
3.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008572

RESUMEN

A large set of FoxOs-dependent genes play a primary role in controlling muscle mass during hindlimb unloading. Mitochondrial dysfunction can modulate such a process. We hypothesized that endurance exercise before disuse can protect against disuse-induced muscle atrophy by enhancing peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) expression and preventing mitochondrial dysfunction and energy-sensing AMP-activated protein kinase (AMPK) activation. We studied cross sectional area (CSA) of muscle fibers of gastrocnemius muscle by histochemistry following 1, 3, 7, and 14 days of hindlimb unloading (HU). We used Western blotting and qRT-PCR to study mitochondrial dynamics and FoxOs-dependent atrogenes' expression at 1 and 3 days after HU. Preconditioned animals were submitted to moderate treadmill exercise for 7 days before disuse. Exercise preconditioning protected the gastrocnemius from disuse atrophy until 7 days of HU. It blunted alterations in mitochondrial dynamics up to 3 days after HU and the expression of most atrogenes at 1 day after disuse. In preconditioned mice, the activation of atrogenes resumed 3 days after HU when mitochondrial dynamics, assessed by profusion and pro-fission markers (mitofusin 1, MFN1, mitofusin 2, MFN2, optic atrophy 1, OPA1, dynamin related protein 1, DRP1 and fission 1, FIS1), PGC1α levels, and AMPK activation were at a basal level. Therefore, the normalization of mitochondrial dynamics and function was not sufficient to prevent atrogenes activation just a few days after HU. The time course of sirtuin 1 (SIRT1) expression and content paralleled the time course of atrogenes' expression. In conclusion, seven days of endurance exercise counteracted alterations of mitochondrial dynamics and the activation of atrogenes early into disuse. Despite the normalization of mitochondrial dynamics, the effect on atrogenes' suppression died away within 3 days of HU. Interestingly, muscle protection lasted until 7 days of HU. A longer or more intense exercise preconditioning may prolong atrogenes suppression and muscle protection.


Asunto(s)
Suspensión Trasera/fisiología , Miembro Posterior/fisiopatología , Músculo Esquelético/fisiopatología , Atrofia Muscular/fisiopatología , Condicionamiento Físico Animal/fisiología , Animales , Biomarcadores/metabolismo , Miembro Posterior/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales/fisiología , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Trastornos Musculares Atróficos/metabolismo , Trastornos Musculares Atróficos/fisiopatología
4.
J Physiol ; 595(4): 1143-1158, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27767211

RESUMEN

KEY POINTS: Muscle atrophy is a debilitating condition that affects a high percentage of the population with a negative impact on quality of life. Dissecting the molecular level of the atrophy process, and the similarities/dissimilarities among different catabolic conditions, is a necessary step for designing specific countermeasures to attenuate/prevent muscle loss. The FoxO family transcription factors represent one of the most important regulators of atrophy programme stimulating the expression of many atrophy-related genes. The findings of the present study clearly indicate that the signalling network controlling the atrophy programme is specific for each catabolic condition. ABSTRACT: Muscle atrophy is a complex process that is in common with many different catabolic diseases including disuse/inactivity and ageing. The signalling pathways that control the atrophy programme in the different disuse/inactivity conditions have not yet been completely dissected. The inhibition of FoxO is considered to only partially spare muscle mass after denervation. The present study aimed: (i) to determine the involvement of FoxOs in hindlimb suspension disuse model; (ii) to define whether the molecular events of protein breakdown are shared among different unloaded muscles; and finally (iii) to compare the data obtained in this model with another model of inactivity such as denervation. Both wild-type and muscle-specific FoxO1,3,4 knockout (FoxO1,3,4-/- ) mice were unloaded for 3 and 14 days and muscles were characterized by functional, morphological, biochemical and molecular assays. The data obtained show that FoxOs are required for muscle loss and force drop during unloading. Moreover, we found that FoxO-dependent atrogenes vary in different unloaded muscles and that they diverge from denervation. The findings of the present study clearly indicate that the signalling network that controls the atrophy programme is specific for each catabolic condition.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Atrofia Muscular/metabolismo , Animales , Factores de Transcripción Forkhead/genética , Suspensión Trasera/efectos adversos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/etiología
5.
J Physiol ; 595(14): 4823-4844, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28452077

RESUMEN

KEY POINTS: Loss of muscle mass and strength in the growing population of elderly people is a major health concern for modern societies. This condition, termed sarcopenia, is a major cause of falls and of the subsequent increase in morbidity and mortality. Despite numerous studies on the impact of ageing on individual muscle fibres, the contribution of single muscle fibre adaptations to ageing-induced atrophy and functional impairment is still unsettled. The level of physical function and disuse is often associated with ageing. We studied relatively healthy older adults in order to understand the effects of ageing per se without the confounding impact of impaired physical function. We found that in healthy ageing, structural and functional alterations of muscle fibres occur. Protein post-translational modifications, oxidation and phosphorylation contribute to such alterations more than loss of myosin and other muscle protein content. ABSTRACT: Contradictory results have been reported on the impact of ageing on structure and functions of skeletal muscle fibres, likely to be due to a complex interplay between ageing and other phenomena such as disuse and diseases. Here we recruited healthy, physically and socially active young (YO) and elderly (EL) men in order to study ageing per se without the confounding effects of impaired physical function. In vivo analyses of quadriceps and in vitro analyses of vastus lateralis muscle biopsies were performed. In EL subjects, our results show that (i) quadriceps volume, maximum voluntary contraction isometric torque and patellar tendon force were significantly lower; (ii) muscle fibres went through significant atrophy and impairment of specific force (isometric force/cross-sectional area) and unloaded shortening velocity; (iii) myosin/actin ratio and myosin content in individual muscle fibres were not altered; (iv) the muscle proteome went through quantitative adaptations, namely an up-regulation of the content of several groups of proteins among which were myofibrillar proteins and antioxidant defence systems; (v) the muscle proteome went through qualitative adaptations, namely phosphorylation of several proteins, including myosin light chain-2 slow and troponin T and carbonylation of myosin heavy chains. The present results indicate that impairment of individual muscle fibre structure and function is a major feature of ageing per se and that qualitative adaptations of muscle proteome are likely to be more involved than quantitative adaptations in determining such a phenomenon.


Asunto(s)
Envejecimiento/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Adulto , Anciano , Ejercicio Físico , Humanos , Masculino , Atrofia Muscular/metabolismo , Oxidación-Reducción , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma , Adulto Joven
6.
J Physiol ; 593(8): 1981-95, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25565653

RESUMEN

KEY POINTS: Skeletal muscle atrophy occurs as a result of disuse. Although several studies have established that a decrease in protein synthesis and increase in protein degradation lead to muscle atrophy, little is known about the triggers underlying such processes. A growing body of evidence challenges oxidative stress as a trigger of disuse atrophy; furthermore, it is also becoming evident that mitochondrial dysfunction may play a causative role in determining muscle atrophy. Mitochondrial fusion and fission have emerged as important processes that govern mitochondrial function and PGC-1α may regulate fusion/fission events. Although most studies on mice have focused on the anti-gravitary slow soleus muscle as it is preferentially affected by disuse atrophy, several fast muscles (including gastrocnemius) go through a significant loss of mass following unloading. Here we found that in fast muscles an early down-regulation of pro-fusion proteins, through concomitant AMP-activated protein kinase (AMPK) activation, can activate catabolic systems, and ultimately cause muscle mass loss in disuse. Elevated muscle PGC-1α completely preserves muscle mass by preventing the fall in pro-fusion protein expression, AMPK and catabolic system activation, suggesting that compounds inducing PGC-1α expression could be useful to treat and prevent muscle atrophy. ABSTRACT: The mechanisms triggering disuse muscle atrophy remain of debate. It is becoming evident that mitochondrial dysfunction may regulate pathways controlling muscle mass. We have recently shown that mitochondrial dysfunction plays a major role in disuse atrophy of soleus, a slow, oxidative muscle. Here we tested the hypothesis that hindlimb unloading-induced atrophy could be due to mitochondrial dysfunction in fast muscles too, notwithstanding their much lower mitochondrial content. Gastrocnemius displayed atrophy following both 3 and 7 days of unloading. SOD1 and catalase up-regulation, no H2 O2 accumulation and no increase of protein carbonylation suggest the antioxidant defence system efficiently reacted to redox imbalance in the early phases of disuse. A defective mitochondrial fusion (Mfn1, Mfn2 and OPA1 down-regulation) occurred together with an impairment of OXPHOS capacity. Furthermore, at 3 days of unloading higher acetyl-CoA carboxylase (ACC) phosphorylation was found, suggesting AMP-activated protein kinase (AMPK) pathway activation. To test the role of mitochondrial alterations we used Tg-mice overexpressing PGC-1α because of the known effect of PGC-1α on stimulation of Mfn2 expression. PGC-α overexpression was sufficient to prevent (i) the decrease of pro-fusion proteins (Mfn1, Mfn2 and OPA1), (ii) activation of the AMPK pathway, (iii) the inducible expression of MuRF1 and atrogin1 and of authopagic factors, and (iv) any muscle mass loss in response to disuse. As the effects of increased PGC-1α activity were sustained throughout disuse, compounds inducing PGC-1α expression could be useful to treat and prevent muscle atrophy also in fast muscles.


Asunto(s)
Suspensión Trasera/fisiología , Dinámicas Mitocondriales/fisiología , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Animales , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Factores de Transcripción/genética , Regulación hacia Arriba
7.
J Physiol ; 593(24): 5361-85, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26369674

RESUMEN

KEY POINTS: It is generally assumed that muscle fibres go through atrophy following disuse with a loss of specific force and an increase in unloaded shortening velocity. However, the underlying mechanisms remain to be clarified. Most studies have focused on events taking place during the development of disuse, whereas the subsequent recovery phase, which is equally important, has received little attention. Our findings support the hypotheses that the specific force of muscle fibres decreased following unilateral lower limb suspension (ULLS) and returned to normal after 3 weeks of active recovery as a result of a loss and recovery of myosin and actin content. Furthermore, muscle fibres went through extensive qualitative changes in muscle protein pattern following ULLS, and these were reversed by active recovery. Resistance training was very effective in restoring both muscle mass and qualitative muscle changes, indicating that long-term ULLS did not prevent the positive effect of exercise on human muscle. ABSTRACT: Following disuse, muscle fibre function goes through adaptations such as a loss of specific force (PO /CSA) and an increase in unloaded shortening velocity, which could be a result of both quantitative changes (i.e. atrophy) and qualitative changes in protein pattern. The underlying mechanisms remain to be clarified. In addition, little is known about the recovery of muscle mass and strength following disuse. In the present study, we report an extensive dataset describing, in detail,the functional and protein content adaptations of skeletal muscle in response to both disuse and re-training. Eight young healthy subjects were subjected to 3 weeks of unilateral lower limb suspension (ULLS), a widely used human model of disuse skeletal muscle atrophy. Needle biopsies samples were taken from the vastus lateralis muscle Pre-ULLS, Post-ULLS and after 3 weeks of recovery during which heavy resistance training was performed. After disuse, cross-sectional area (CSA), PO /CSA and myosin concentration (MC) decreased in both type 1 and 2A skinned muscle fibres. After recovery, CSA and MC returned to levels comparable to those observed before disuse, whereas Po/CSA and unloaded shortening velocity reached a higher level. Myosin heavy chain isoform composition of muscle samples did not differ among the experimental groups. To study the mechanisms underlying such adaptations, a two-dimensional proteomic analysis was performed. ULLS induced a reduction of myofibrillar, metabolic (glycolytic and oxidative) and anti-oxidant defence system protein content. Resistance training was very effective in counteracting ULLS-induced alterations, indicating that long-term ULLS did not prevent the positive effect of exercise on human muscle.


Asunto(s)
Contracción Muscular , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Proteoma/metabolismo , Entrenamiento de Fuerza , Actinas/metabolismo , Adolescente , Adulto , Humanos , Pierna/fisiología , Fibras Musculares Esqueléticas/fisiología , Atrofia Muscular/etiología , Atrofia Muscular/terapia , Miosinas/metabolismo , Recuperación de la Función , Restricción Física/efectos adversos
8.
Muscle Nerve ; 52(4): 631-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25594832

RESUMEN

INTRODUCTION: The aim of this study was to understand the effects of short-term glucocorticoid administration in healthy subjects. METHODS: Five healthy men received dexamethasone (8 mg/day) for 7 days. Vastus lateralis muscle biopsy and knee extension torque measurement were performed before and after administration. A large number of individual muscle fibers were dissected from the biopsy samples (pre-administration: n = 165, post-administration: n = 177). RESULTS: Maximal knee extension torque increased after administration (∼ 13%), whereas both type 1 and type 2A fibers had decreased cross-sectional area (type 1: ∼ 11%, type 2A: ∼ 17%), myosin loss (type 1: ∼ 18%, type 2A: ∼ 32%), and loss of specific force (type 1: ∼ 24%, type 2A: ∼ 33%), which were preferential for fast fibers. CONCLUSION: Short-term dexamethasone administration in healthy subjects elicits quantitative and qualitative adaptations of muscle fibers that precede (and may predict) the clinical appearance of myopathy in glucocorticoid-treated subjects.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Dexametasona/farmacología , Glucocorticoides/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Adulto , Creatina Quinasa/sangre , Ayuno , Humanos , Hidrocortisona/metabolismo , Rodilla/inervación , Masculino , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/metabolismo , Miosinas/genética , Miosinas/metabolismo , ARN Mensajero , Estadísticas no Paramétricas , Torque
9.
J Physiol ; 592(20): 4575-89, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25128574

RESUMEN

Prolonged skeletal muscle inactivity causes muscle fibre atrophy. Redox imbalance has been considered one of the major triggers of skeletal muscle disuse atrophy, but whether redox imbalance is actually the major cause or simply a consequence of muscle disuse remains of debate. Here we hypothesized that a metabolic stress mediated by PGC-1α down-regulation plays a major role in disuse atrophy. First we studied the adaptations of soleus to mice hindlimb unloading (HU) in the early phase of disuse (3 and 7 days of HU) with and without antioxidant treatment (trolox). HU caused a reduction in cross-sectional area, redox status alteration (NRF2, SOD1 and catalase up-regulation), and induction of the ubiquitin proteasome system (MuRF-1 and atrogin-1 mRNA up-regulation) and autophagy (Beclin1 and p62 mRNA up-regulation). Trolox completely prevented the induction of NRF2, SOD1 and catalase mRNAs, but not atrophy or induction of catabolic systems in unloaded muscles, suggesting that oxidative stress is not a major cause of disuse atrophy. HU mice showed a marked alteration of oxidative metabolism. PGC-1α and mitochondrial complexes were down-regulated and DRP1 was up-regulated. To define the link between mitochondrial dysfunction and disuse muscle atrophy we unloaded mice overexpressing PGC-1α. Transgenic PGC-1α animals did not show metabolic alteration during unloading, preserving muscle size through the reduction of autophagy and proteasome degradation. Our results indicate that mitochondrial dysfunction plays a major role in disuse atrophy and that compounds inducing PGC-1α expression could be useful to treat/prevent muscle atrophy.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Beclina-1 , Catalasa/genética , Catalasa/metabolismo , Cromanos/farmacología , Cromanos/uso terapéutico , Dinaminas/genética , Dinaminas/metabolismo , Suspensión Trasera/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/fisiología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/prevención & control , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
J Gen Physiol ; 156(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376469

RESUMEN

Nemaline myopathies are the most common form of congenital myopathies. Variants in ACTA1 (NEM3) comprise 15-25% of all nemaline myopathy cases. Patients harboring variants in ACTA1 present with a heterogeneous disease course characterized by stable or progressive muscle weakness and, in severe cases, respiratory failure and death. To date, no specific treatments are available. Since NEM3 is an actin-based thin filament disease, we tested the ability of tirasemtiv, a fast skeletal muscle troponin activator, to improve skeletal muscle function in a mouse model of NEM3, harboring the patient-based p.Asp286Gly variant in Acta1. Acute and long-term tirasemtiv treatment significantly increased muscle contractile capacity at submaximal stimulation frequencies in both fast-twitch extensor digitorum longus and gastrocnemius muscle, and intermediate-twitch diaphragm muscle in vitro and in vivo. Additionally, long-term tirasemtiv treatment in NEM3 mice resulted in a decreased respiratory rate with preserved minute volume, suggesting more efficient respiration. Altogether, our data support the therapeutic potential of fast skeletal muscle troponin activators in alleviating skeletal muscle weakness in a mouse model of NEM3 caused by the Acta1:p.Asp286Gly variant.


Asunto(s)
Imidazoles , Miopatías Nemalínicas , Pirazinas , Humanos , Animales , Ratones , Miopatías Nemalínicas/tratamiento farmacológico , Miopatías Nemalínicas/genética , Tono Muscular , Actinas/genética , Músculo Esquelético , Modelos Animales de Enfermedad , Troponina
11.
J Appl Physiol (1985) ; 135(4): 902-917, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37675472

RESUMEN

Following acute coronavirus disease 2019 (COVID-19), a substantial proportion of patients showed symptoms and sequelae for several months, namely the postacute sequelae of COVID-19 (PASC) syndrome. Major phenomena are exercise intolerance, muscle weakness, and fatigue. We aimed to investigate the physiopathology of exercise intolerance in patients with PASC syndrome by structural and functional analyses of skeletal muscle. At least 3 mo after infection, nonhospitalized patients with PASC (n = 11, age: 54 ± 11 yr; PASC) and patients without long-term symptoms (n = 12, age: 49 ± 9 yr; CTRL) visited the laboratory on four nonconsecutive days. Spirometry, lung diffusion capacity, and quality of life were assessed at rest. A cardiopulmonary incremental exercise test was performed. Oxygen consumption (V̇o2) kinetics were determined by moderate-intensity exercises. Muscle oxidative capacity (k) was assessed by near-infrared spectroscopy. Histochemical analysis, O2 flux (JO2) by high-resolution respirometry, and quantification of key molecular markers of mitochondrial biogenesis and dynamics were performed in vastus lateralis biopsies. Pulmonary and cardiac functions were within normal range in all patients. V̇o2peak was lower in PASC than CTRL (24.7 ± 5.0 vs. 32.9 ± 7.4 mL·min-1·kg-1, respectively, P < 0.05). V̇o2 kinetics was slower in PASC than CTRL (41 ± 12 vs. 30 ± 9 s-1, P < 0.05). k was lower in PASC than CTRL (1.54 ± 0.49 vs. 2.07 ± 0.51 min-1, P < 0.05). Citrate synthase, peroxisome proliferator-activated receptor-γ coactivator (PGC)1α, and JO2 for mitochondrial complex II were significantly lower in PASC vs. CTRL (all P values <0.05). In our cohort of patients with PASC, we showed limited exercise tolerance mainly due to "peripheral" determinants. Substantial reductions were observed for biomarkers of mitochondrial function, content, and biogenesis. PASC syndrome, therefore, appears to negatively impact skeletal muscle function, although the disease is a heterogeneous condition.NEW & NOTEWORTHY Several months after mild acute SARS-CoV-2 infection, a substantial proportion of patients present persisting, and often debilitating, symptoms and sequelae. These patients show reduced quality of life due to exercise intolerance, muscle weakness, and fatigue. The present study supports the hypothesis that "peripheral" impairments at skeletal muscle level, namely, reduced mitochondrial function and markers of mitochondrial biogenesis, are major determinants of exercise intolerance and fatigue, "central" phenomena at respiratory, and cardiac level being less relevant.


Asunto(s)
COVID-19 , Calidad de Vida , Humanos , Adulto , Persona de Mediana Edad , Anciano , COVID-19/patología , SARS-CoV-2 , Músculo Esquelético/fisiología , Debilidad Muscular/etiología
12.
J Physiol ; 590(20): 5211-30, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22848045

RESUMEN

In order to get a comprehensive picture of the complex adaptations of human skeletal muscle to disuse and further the understanding of the underlying mechanisms, we participated in two bed rest campaigns, one lasting 35 days and one 24 days. In the first bed rest (BR) campaign, myofibrillar proteins, metabolic enzymes and antioxidant defence systems were found to be down-regulated both post-8 days and post-35 days BR by proteomic analysis of vastus lateralis muscle samples from nine subjects. Such profound alterations occurred early (post-8 days BR), before disuse atrophy developed, and persisted through BR (post-35 days BR). To understand the mechanisms underlying the protein adaptations observed, muscle biopsies from the second bed rest campaign (nine subjects) were used to evaluate the adaptations of master controllers of the balance between muscle protein breakdown and muscle protein synthesis (MuRF-1 and atrogin-1; Akt and p70S6K), of autophagy (Beclin-1, p62, LC3, bnip3, cathepsin-L), of expression of antioxidant defence systems (NRF2) and of energy metabolism (PGC-1α, SREBP-1, AMPK). The results indicate that: (i) redox imbalance and remodelling of muscle proteome occur early and persist through BR; (ii) impaired energy metabolism is an early and persistent phenomenon comprising both the oxidative and glycolytic one; (iii) although both major catabolic systems, ubiquitin proteasome and autophagy, could contribute to the progression of atrophy late into BR, a decreased protein synthesis cannot be ruled out; (iv) a decreased PGC-1α, with the concurrence of SREBP-1 up-regulation, is a likely trigger of metabolic impairment, whereas the AMPK pathway is unaltered.


Asunto(s)
Reposo en Cama , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Trastornos Musculares Atróficos/metabolismo , Adulto , Metabolismo Energético , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Músculo Esquelético/anatomía & histología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteoma , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Adulto Joven
13.
Nature ; 439(7079): 973-7, 2006 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-16341202

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that is not due to a classical mutation within a protein-coding gene. Instead, almost all FSHD patients carry deletions of an integral number of tandem 3.3-kilobase repeat units, termed D4Z4, located on chromosome 4q35 (ref. 3). D4Z4 contains a transcriptional silencer whose deletion leads to inappropriate overexpression in FSHD skeletal muscle of 4q35 genes located upstream of D4Z4 (ref. 4). To identify the gene responsible for FSHD pathogenesis, we generated transgenic mice selectively overexpressing in skeletal muscle the 4q35 genes FRG1, FRG2 or ANT1. We find that FRG1 transgenic mice develop a muscular dystrophy with features characteristic of the human disease; by contrast, FRG2 and ANT1 transgenic mice seem normal. FRG1 is a nuclear protein and several lines of evidence suggest it is involved in pre-messenger RNA splicing. We find that in muscle of FRG1 transgenic mice and FSHD patients, specific pre-mRNAs undergo aberrant alternative splicing. Collectively, our results suggest that FSHD results from inappropriate overexpression of FRG1 in skeletal muscle, which leads to abnormal alternative splicing of specific pre-mRNAs.


Asunto(s)
Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Proteínas/genética , Proteínas/metabolismo , Transgenes/genética , Empalme Alternativo/genética , Animales , Línea Celular , Femenino , Humanos , Cifosis/complicaciones , Cifosis/genética , Cifosis/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/complicaciones , Distrofia Muscular Facioescapulohumeral/fisiopatología , Tamaño de los Órganos , Esfuerzo Físico/fisiología , Proteínas de Unión al ARN , Pérdida de Peso
14.
J Physiol ; 589(Pt 9): 2147-60, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21320887

RESUMEN

A pivotal role has been ascribed to oxidative stress in determining the imbalance between protein synthesis and degradation leading to muscle atrophy in many pathological conditions and in disuse. However, a large variability in disuse-induced alteration of redox homeostasis through muscles, models and species emerges from the literature. Whereas the causal role of oxidative stress appears well established in the mechanical ventilation model, findings are less compelling in the hindlimb unloaded mice and very limited in humans. The mere coexistence of muscle atrophy, indirect indexes of increased reactive oxygen species (ROS) production and impairment of antioxidant defence systems, in fact, does not unequivocally support a causal role of oxidative stress in the phenomenon. We hypothesise that in some muscles, models and species only, due to a large redox imbalance, the leading phenomena are activation of proteolysis and massive oxidation of proteins, which would become more susceptible to degradation. In other conditions, due to a lower extent and variable time course of ROS production, different ROS-dependent, but also -independent intracellular pathways might dominate determining the variable extent of atrophy and even dispensable protein oxidation. The ROS production and removal are complex and finely tuned phenomena. They are indeed important intracellular signals and redox balance maintains normal muscle homeostasis and can underlie either positive or negative adaptations to exercise. A precise approach to determine the levels of ROS in living cells in various conditions appears to be of paramount importance to define and support such hypotheses.


Asunto(s)
Contracción Muscular , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Suspensión Trasera , Homeostasis , Humanos , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Oxidación-Reducción , Transducción de Señal , Factores de Tiempo
15.
Exp Physiol ; 95(2): 331-50, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19819934

RESUMEN

Two-dimensional proteomic maps of soleus (Sol), a slow oxidative muscle, and gastrocnemius (Gas), a fast glycolytic muscle of control mice (CTRL), of mice hindlimb unloaded for 14 days (HU mice) and of HU mice treated with trolox (HU-TRO), a selective and potent antioxidant, were compared. The proteomic analysis identified a large number of differentially expressed proteins in a pool of approximately 800 proteins in both muscles. The protein pattern of Sol and Gas adapted very differently to hindlimb unloading. The most interesting adaptations related to the cellular defense systems against oxidative stress and energy metabolism. In HU Sol, the antioxidant defense systems and heat shock proteins were downregulated, and protein oxidation index and lipid peroxidation were higher compared with CTRL Sol. In contrast, in HU Gas the antioxidant defense systems were upregulated, and protein oxidation index and lipid peroxidation were normal. Notably, both Sol and Gas muscles and their muscle fibres were atrophic. Antioxidant administration prevented the impairment of the antioxidant defense systems in Sol and further enhanced them in Gas. Accordingly, it restored normal levels of protein oxidation and lipid peroxidation in Sol. However, muscle and muscle fibre atrophy was not prevented either in Sol or in Gas. A general downsizing of all energy production systems in Sol and a shift towards glycolytic metabolism in Gas were observed. Trolox administration did not prevent metabolic adaptations in either Sol or Gas. The present findings suggest that oxidative stress is not a major determinant of muscle atrophy in HU mice.


Asunto(s)
Suspensión Trasera , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiopatología , Trastornos Musculares Atróficos/fisiopatología , Estrés Oxidativo , Proteoma/metabolismo , Adaptación Fisiológica , Animales , Ratones
16.
Pharmacol Res ; 61(6): 553-63, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20116431

RESUMEN

Oxidative stress was proposed as a trigger of muscle impairment in various muscle diseases. The hindlimb-unloaded (HU) rodent is a model of disuse inducing atrophy and slow-to-fast transition of postural muscles. Here, mice unloaded for 14 days were chronically treated with the selective antioxidant trolox. After HU, atrophy was more pronounced in the slow-twitch soleus muscle (Sol) than in the fast-twitch gastrocnemius and tibialis anterior muscles, and was absent in extensor digitorum longus muscle. In accord with the phenotype transition, HU Sol showed a reduced expression of myosin heavy chain type 2A (MHC-2A) and increase in MHC-2X and MHC-2B isoforms. In parallel, HU Sol displayed an increased sarcolemma chloride conductance related to an increased expression of ClC-1 channels, changes in excitability parameters, a positive shift of the mechanical threshold, and a decrease of the resting cytosolic calcium concentration. Moreover, the level of lipoperoxidation increased proportionally to the degree of atrophy of each muscle type. As expected, trolox treatment fully prevented oxidative stress in HU mice. Atrophy was not prevented but the drug significantly attenuated Sol phenotypic transition and excitability changes. Trolox treatment had no effect on control mice. These results suggest possible benefits of antioxidants in protecting muscle against disuse.


Asunto(s)
Antioxidantes/uso terapéutico , Cromanos/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Trastornos Musculares Atróficos/tratamiento farmacológico , Animales , Calcio/metabolismo , Canales de Cloruro/genética , Suspensión Trasera , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos Musculares Atróficos/patología , ARN Mensajero/genética , Sarcolema/metabolismo
17.
Physiol Rep ; 7(13): e14161, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31267722

RESUMEN

Physical activity is emerging as an alternative nonpharmaceutical strategy to prevent and treat a variety of cardiovascular diseases due to its cardiac and skeletal muscle beneficial effects. Oxidative stress occurs in skeletal muscle of chronic heart failure (CHF) patients with possible impact on muscle function decline. We determined the effect of voluntary-free wheel running (VFWR) in preventing protein damage in Tgαq*44 transgenic mice (Tg) characterized by a delayed CHF progression. In the early (6 months) and transition (12 months) phase of CHF, VFWR increased the daily mean distance covered by Tg mice eliminating the difference between Tg and WT present before exercise at 12 months of age (WT Pre-EX 3.62 ± 1.66 vs. Tg Pre-EX 1.51 ± 1.09 km, P < 0.005; WT Post-EX 5.72 ± 3.42 vs. Tg Post-EX 4.17 ± 1.8 km, P > 0.005). This effect was concomitant with an improvement of in vivo cardiac performance [(Cardiac Index (mL/min/cm2 ): 6 months, untrained-Tg 0.167 ± 0.005 vs. trained-Tg 0.21 ± 0.003, P < 0.005; 12 months, untrained-Tg 0.1 ± 0.009 vs. trained-Tg 0.133 ± 0.005, P < 0.005]. Such effects were associated with a skeletal muscle antioxidant response effective in preventing oxidative damage induced by CHF at the transition phase (untrained-Tg 0.438 ± 0.25 vs. trained-Tg 0.114 ± 0.010, P < 0.05) and with an increased expression of protein control markers (MuRF-1, untrained-Tg 1.12 ± 0.29 vs. trained-Tg 14.14 ± 3.04, P < 0.0001; Atrogin-1, untrained-Tg 0.9 ± 0.38 vs. trained-Tg 7.79 ± 2.03, P < 0.01; Cathepsin L, untrained-Tg 0.91 ± 0.27 vs. trained-Tg 2.14 ± 0.55, P < 0.01). At the end-stage of CHF (14 months), trained-Tg mice showed a worsening of physical performance (decrease in daily activity and weekly distance and time of activity) compared to trained age-matched WT in association with oxidative protein damage of a similar level to that of untrained-Tg mice (untrained-Tg 0.62 ± 0.24 vs. trained-Tg 0.64 ± 0.13, P > 0.05). Prolonged voluntary physical activity performed before the onset of CHF end-stage, appears to be a useful tool to increase cardiac function and to reduce skeletal muscle oxidative damage counteracting physical activity decline.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/métodos , Carrera , Animales , Catepsina L/genética , Catepsina L/metabolismo , Femenino , Corazón/fisiología , Insuficiencia Cardíaca/prevención & control , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Estrés Oxidativo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
Am J Cardiol ; 101(11A): 57E-62E, 2008 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-18514628

RESUMEN

Oxidative stress plays an important role in the pathogenesis of diabetic complications. We investigated the effects of a specific oral mixture of amino acid (AA) supplements on the antioxidant defense system, superoxide dismutase (SOD), and heat shock proteins (HSPs: HspB1, similar to Hsp 20 kDa, and HspB7) in the soleus muscle of streptozotocin (STZ)-diabetic mice by bidimensional electrophoresis and mass spectrometry. Four groups of 5 mice were considered: nondiabetic control mice, nondiabetic mice given AA supplements (0.1 g/kg per day for 15 days), diabetic mice (induced with STZ 65 mg/kg), and diabetic mice given AAs. AA supplements in the nondiabetic animals were associated with a statistical increase of SOD and no changes in expression of HSPs. Diabetes mellitus decreased antioxidant SOD and increased cellular stress as demonstrated by the overall upregulated HSPs. Administration of AAs counteracted the effects of diabetes, producing upregulation of SOD and downregulation of HSPs. These data suggest a role for AA supplements in controlling the antioxidant defense system and reducing the oxidative stress in diabetic skeletal muscle.


Asunto(s)
Aminoácidos/administración & dosificación , Diabetes Mellitus Experimental/enzimología , Suplementos Dietéticos , Músculo Esquelético/enzimología , Superóxido Dismutasa/metabolismo , Animales , Diabetes Mellitus Experimental/fisiopatología , Electroforesis , Proteínas de Choque Térmico/metabolismo , Hiperglucemia/enzimología , Hiperglucemia/fisiopatología , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
19.
Am J Cardiol ; 101(11A): 49E-56E, 2008 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-18514627

RESUMEN

We aimed to assess whether a specific mixture of amino acid (AA) supplements counteracts the metabolic and functional changes in the streptozotocin (STZ)-induced diabetic rat heart model. Adult male Wistar rats were divided into 6 groups (n = 10 each) and treated for 43 days: nondiabetic controls, nondiabetic rats given an AA mixture (0.1 g/kg per day), diabetic rats (induced with 65 mg/kg STZ given intraperitoneally), diabetic rats given AAs, diabetic rats given insulin (5 IU/day given subcutaneously), and diabetic rats given insulin plus AAs. During treatment, glycemia and insulinemia levels were measured in all groups. Changes in enzyme (reduced nicotinamide adenine dinucleotide-dehydrogenase, cytochrome c oxidase) activities and myosin heavy chain (MHC) composition were measured in the left ventricle. In 5 rats contractile function was assessed by measuring maximal shortening velocity of skinned ventricular trabeculae and the expression of translational regulator mammalian target of rapamycin (mTOR) was also found. STZ-induced diabetes was associated with reduced myocardial contractility, overall loss of oxidative capacity, a shift toward a slower MHC phenotype, and decreased mTOR tissue content. All of these changes appeared to be reversible with insulin. AA supplements partially restored the myocardial and oxidative dysfunction and also increased mTOR tissue content. The combination of insulin and AAs did not have a synergistic effect on either enzymatic or functional profiles. We conclude that AA supplements may contribute to restoring the oxidative and contractile dysfunction of diabetic rat hearts, probably through an mTOR-insulin independent mechanism.


Asunto(s)
Aminoácidos/administración & dosificación , Diabetes Mellitus Experimental/fisiopatología , Suplementos Dietéticos , Corazón/efectos de los fármacos , Miocardio/metabolismo , Función Ventricular/efectos de los fármacos , Animales , Western Blotting , Proteínas Portadoras/metabolismo , Diabetes Mellitus Experimental/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Masculino , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Ratas , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA