Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 285(1875)2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29593109

RESUMEN

Many animal life histories entail changing feeding ecology, but the molecular bases for these transitions are poorly understood. The amphibian tadpole is typically a growth and dispersal life-history stage. Tadpoles are primarily herbivorous, and they capitalize on growth opportunities to reach a minimum body size to initiate metamorphosis. During metamorphic climax, feeding declines, at which time the gastrointestinal (GI) tract remodels to accommodate the carnivorous diet of the adult frog. Here we show that anorexigenic hypothalamic feeding controls are absent in the tadpole, but develop during metamorphosis concurrent with the production of the satiety signal leptin. Before metamorphosis there is a large increase in leptin mRNA in fat tissue. Leptin receptor mRNA increased during metamorphosis in the preoptic area/hypothalamus, the key brain region involved with the control of food intake and metabolism. This corresponded with an increase in functional leptin receptor, as evidenced by induction of socs3 mRNA and phosphorylated STAT3 immunoreactivity, and suppression of feeding behaviour after injection of recombinant frog leptin. Furthermore, we found that immunoneutralization of leptin in tadpoles at metamorphic climax caused them to resume feeding. The absence of negative regulation of food intake in the tadpole allows the animal to maximize growth prior to metamorphosis. Maturation of leptin-responsive neural circuits suppresses feeding during metamorphosis to facilitate remodelling of the GI tract.


Asunto(s)
Proteínas Anfibias/metabolismo , Ingestión de Alimentos , Conducta Alimentaria , Hipotálamo/metabolismo , Leptina/fisiología , Xenopus laevis/fisiología , Tejido Adiposo/metabolismo , Proteínas Anfibias/genética , Animales , Larva/genética , Larva/fisiología , Leptina/genética , Metamorfosis Biológica/genética , Metamorfosis Biológica/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Leptina/fisiología , Proteínas Recombinantes/farmacología , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
2.
Biochim Biophys Acta ; 1841(7): 970-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24681165

RESUMEN

Lipoprotein lipase (LPL) has been highly conserved through vertebrate evolution, making it challenging to generate useful antibodies. Some polyclonal antibodies against LPL have turned out to be nonspecific, and the available monoclonal antibodies (Mabs) against LPL, all of which bind to LPL's carboxyl terminus, have drawbacks for some purposes. We report a new LPL-specific monoclonal antibody, Mab 4-1a, which binds to the amino terminus of LPL (residues 5-25). Mab 4-1a binds human and bovine LPL avidly; it does not inhibit LPL catalytic activity nor does it interfere with the binding of LPL to heparin. Mab 4-1a does not bind to human hepatic lipase. Mab 4-1a binds to GPIHBP1-bound LPL and does not interfere with the ability of the LPL-GPIHBP1 complex to bind triglyceride-rich lipoproteins. Mab 4-1a will be a useful reagent for both biochemists and clinical laboratories.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Lipoproteína Lipasa/metabolismo , Receptores de Lipoproteína/metabolismo , Triglicéridos/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/aislamiento & purificación , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Células CHO , Bovinos , Cricetulus , Expresión Génica , Heparina/metabolismo , Humanos , Lipasa/metabolismo , Lipoproteína Lipasa/genética , Ratones , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores de Lipoproteína/genética , Transfección
3.
J Insect Physiol ; 52(5): 450-60, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16530216

RESUMEN

The eye imaginal disc of Manduca sexta is created early in the final larval instar from the adult eye primordium, which is composed of fully differentiated cells of the larval head capsule epidermis. Concomitant with the down-regulation of the larval epidermal program, expression of broad, a marker of pupal commitment, is activated in the primordium. The cells then detach from the cuticle, fold inward, and begin to proliferate at high levels to produce the inverted, eye imaginal disc. These and other events that begin on the first day of the final larval instar appear to mark the initiation of metamorphosis. Little is known about the endocrine control of the initiation of metamorphosis in any insect. The hemolymph titer of juvenile hormone (JH) declines to low levels during this period and the presence of JH is sufficient to repress development in cultured eye primordia. However, maintenance of JH at high levels in vivo by treatment with long-lasting JH mimics has no apparent effect on early steps in eye imaginal disc development. We discuss our findings in the context of the endocrine control of metamorphosis. The initiation of metamorphosis in Manduca, and perhaps a wide range of insect species, appears to involve the overcoming of JH repression by an unidentified, nutrient-dependent, hormonal factor.


Asunto(s)
Ojo/crecimiento & desarrollo , Manduca/crecimiento & desarrollo , Metamorfosis Biológica/fisiología , Animales , Regulación hacia Abajo , Proteínas de Drosophila/metabolismo , Ojo/metabolismo , Expresión Génica , Proteínas de Insectos/metabolismo , Hormonas de Invertebrados/metabolismo , Hormonas Juveniles/fisiología , Manduca/metabolismo , Imitación Molecular , Factores de Transcripción/metabolismo
4.
Endocrinology ; 155(11): 4202-14, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25153147

RESUMEN

In mammals, leptin acts on leptin receptor (LepR) -expressing neurons in the brain to suppress food intake and stimulate whole-body metabolism. A similar action of leptin on food intake has been reported in the frog Xenopus laevis and in several bony fishes. However, the intracellular signaling and neural pathways by which leptin regulates energy balance have not been investigated outside of mammals. Using reporter assays and site-directed mutagenesis we show that the frog LepR signals via signal transducer and activator of transcription (STAT) 3 and STAT5 through evolutionarily conserved tyrosine residues in the LepR cytoplasmic domain. In situ hybridization histochemistry for LepR mRNA in brain and pituitary showed strong expression in the magno- and parvocellular divisions of the anterior preoptic area (homologous to the mammalian paraventricular nucleus), the suprachiasmatic nucleus, ventral hypothalamus, and pars intermedia and pars distalis of the anterior pituitary. Leptin injection increased phosphorylated STAT3 immunoreactivity in LepR mRNA-positive cells, and induced socs3 and pomc mRNAs. Microarray analysis of preoptic area/hypothalamus/pituitary 2 hours after leptin injection identified leptin-regulated genes that included c-fos, a known leptin-activated gene; pituitary follicle-stimulating hormone subunit ß, suggesting an important role for leptin in the reproductive axis of frogs; and B-cell translocation factor 2, which has important functions in neurogenesis. Our findings support that the intracellular signaling pathways and neural substrates that mediate leptin actions on energy balance were present in the common ancestor of modern amphibians and amniotes and have been conserved over 350 million years of evolutionary time.


Asunto(s)
Evolución Molecular , Vías Nerviosas/metabolismo , Receptores de Leptina/fisiología , Transducción de Señal/genética , Secuencia de Aminoácidos , Animales , Regulación del Apetito/genética , Células COS , Chlorocebus aethiops , Leptina/farmacología , Ratones , Datos de Secuencia Molecular , Receptores de Leptina/genética , Homología de Secuencia de Aminoácido , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA