Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(37): 22984-22991, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32868431

RESUMEN

Immune evasion through membrane remodeling is a hallmark of Yersinia pestis pathogenesis. Yersinia remodels its membrane during its life cycle as it alternates between mammalian hosts (37 °C) and ambient (21 °C to 26 °C) temperatures of the arthropod transmission vector or external environment. This shift in growth temperature induces changes in number and length of acyl groups on the lipid A portion of lipopolysaccharide (LPS) for the enteric pathogens Yersinia pseudotuberculosis (Ypt) and Yersinia enterocolitica (Ye), as well as the causative agent of plague, Yersinia pestis (Yp). Addition of a C16 fatty acid (palmitate) to lipid A by the outer membrane acyltransferase enzyme PagP occurs in immunostimulatory Ypt and Ye strains, but not in immune-evasive Yp Analysis of Yp pagP gene sequences identified a single-nucleotide polymorphism that results in a premature stop in translation, yielding a truncated, nonfunctional enzyme. Upon repair of this polymorphism to the sequence present in Ypt and Ye, lipid A isolated from a Yp pagP+ strain synthesized two structures with the C16 fatty acids located in acyloxyacyl linkage at the 2' and 3' positions of the diglucosamine backbone. Structural modifications were confirmed by mass spectrometry and gas chromatography. With the genotypic restoration of PagP enzymatic activity in Yp, a significant increase in lipid A endotoxicity mediated through the MyD88 and TRIF/TRAM arms of the TLR4-signaling pathway was observed. Discovery and repair of an evolutionarily lost lipid A modifying enzyme provides evidence of lipid A as a crucial determinant in Yp infectivity, pathogenesis, and host innate immune evasion.


Asunto(s)
Aciltransferasas/inmunología , Evasión Inmune/inmunología , Inmunidad Innata/inmunología , Lípido A/inmunología , Yersinia pestis/inmunología , Animales , Evolución Biológica , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Leucocitos Mononucleares/inmunología , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple/inmunología , Células THP-1/inmunología , Células U937 , Yersinia pseudotuberculosis/inmunología
2.
Proc Natl Acad Sci U S A ; 109(22): 8716-21, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22586119

RESUMEN

Maintenance of membrane function is essential and regulated at the genomic, transcriptional, and translational levels. Bacterial pathogens have a variety of mechanisms to adapt their membrane in response to transmission between environment, vector, and human host. Using a well-characterized model of lipid A diversification (Francisella), we demonstrate temperature-regulated membrane remodeling directed by multiple alleles of the lipid A-modifying N-acyltransferase enzyme, LpxD. Structural analysis of the lipid A at environmental and host temperatures revealed that the LpxD1 enzyme added a 3-OH C18 acyl group at 37 °C (host), whereas the LpxD2 enzyme added a 3-OH C16 acyl group at 18 °C (environment). Mutational analysis of either of the individual Francisella lpxD genes altered outer membrane (OM) permeability, antimicrobial peptide, and antibiotic susceptibility, whereas only the lpxD1-null mutant was attenuated in mice and subsequently exhibited protection against a lethal WT challenge. Additionally, growth-temperature analysis revealed transcriptional control of the lpxD genes and posttranslational control of the LpxD1 and LpxD2 enzymatic activities. These results suggest a direct mechanism for LPS/lipid A-level modifications resulting in alterations of membrane fluidity, as well as integrity and may represent a general paradigm for bacterial membrane adaptation and virulence-state adaptation.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Francisella/metabolismo , Lipopolisacáridos/metabolismo , Aciltransferasas/clasificación , Aciltransferasas/genética , Animales , Proteínas Bacterianas/genética , Evolución Biológica , Temperatura Corporal , Permeabilidad de la Membrana Celular/genética , Francisella/genética , Francisella/patogenicidad , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/fisiopatología , Interacciones Huésped-Patógeno , Cinética , Lípido A/química , Lípido A/metabolismo , Lipopolisacáridos/química , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Mutación , Filogenia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura , Virulencia/genética
3.
Antimicrob Agents Chemother ; 57(10): 4831-40, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23877686

RESUMEN

Acinetobacter baumannii is a nosocomial opportunistic pathogen that can cause severe infections, including hospital-acquired pneumonia, wound infections, and sepsis. Multidrug-resistant (MDR) strains are prevalent, further complicating patient treatment. Due to the increase in MDR strains, the cationic antimicrobial peptide colistin has been used to treat A. baumannii infections. Colistin-resistant strains of A. baumannii with alterations to the lipid A component of lipopolysaccharide (LPS) have been reported; specifically, the lipid A structure was shown to be hepta-acylated with a phosphoethanolamine (pEtN) modification present on one of the terminal phosphate residues. Using a tandem mass spectrometry platform, we provide definitive evidence that the lipid A isolated from colistin-resistant A. baumannii MAC204 LPS contains a novel structure corresponding to a diphosphoryl hepta-acylated lipid A structure with both pEtN and galactosamine (GalN) modifications. To correlate our structural studies with clinically relevant samples, we characterized colistin-susceptible and -resistant isolates obtained from patients. These results demonstrated that the clinical colistin-resistant isolate had the same pEtN and GalN modifications as those seen in the laboratory-adapted A. baumannii strain MAC204. In summary, this work has shown complete structure characterization including the accurate assignment of acylation, phosphorylation, and glycosylation of lipid A from A. baumannii, which are important for resistance to colistin.


Asunto(s)
Acinetobacter baumannii/química , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Colistina/farmacología , Lipopolisacáridos/química , Cromatografía Liquida , Espectrometría de Masas
4.
Antimicrob Agents Chemother ; 57(5): 2103-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23422916

RESUMEN

Treatment of infections due to extensively drug-resistant (XDR) Acinetobacter baumannii often involves the use of antimicrobial agents in combination. Various combinations of agents have been proposed, with colistin serving as the backbone in many of them. Recent data suggest that glycopeptides, in particular vancomycin, may have unique activity against laboratory-adapted and clinical strains of A. baumannii, alone and in combination with colistin. The aim of the present study was to test this approach against three unique colistin-resistant A. baumannii clinical strains using combinations of vancomycin (VAN), colistin (COL), and doripenem (DOR). All three strains possessed the signature phosphoethanolamine modification of the lipid A moiety associated with colistin resistance and unique amino acid changes in the PmrAB two-component signal transduction system not observed in colistin-susceptible strains. In checkerboard assays, synergy (defined as a fractional inhibitory concentration index [FICI] of ≤ 0.5) was observed between COL and VAN for all three strains tested and between COL and DOR in two strains. In time-kill assays, the combinations of COL-DOR, COL-VAN, and COL-DOR-VAN resulted in complete killing of colistin-resistant A. baumannii in 1, 2, and all 3 strains, respectively. In the Galleria mellonella moth model of infection, the combinations of DOR-VAN and COL-DOR-VAN led to significantly increased survival of the larvae, compared with other combinations and monotherapy. These findings suggest that regimens containing vancomycin may confer therapeutic benefit for infection due to colistin-resistant A. baumannii.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Carbapenémicos/farmacología , Colistina/farmacología , Vancomicina/farmacología , Acinetobacter baumannii/crecimiento & desarrollo , Acinetobacter baumannii/aislamiento & purificación , Animales , Doripenem , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Larva/efectos de los fármacos , Larva/microbiología , Lípido A/química , Lípido A/metabolismo , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Transducción de Señal/efectos de los fármacos
5.
Infect Immun ; 80(3): 943-51, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22215738

RESUMEN

Lipopolysaccharide (LPS) structural modifications have been shown to specifically affect the pathogenesis of many gram-negative pathogens. In Francisella, modification of the lipid A component of LPS resulted in a molecule with no to low endotoxic activity. The role of the terminal lipid A phosphates in host recognition and pathogenesis was determined using a Francisella novicida mutant that lacked the 4' phosphatase enzyme (LpxF). The lipid A of this strain retained the phosphate moiety at the 4' position and the N-linked fatty acid at the 3' position on the diglucosamine backbone. Studies were undertaken to determine the pathogenesis of this mutant strain via the pulmonary and subcutaneous routes of infection. Mice infected with the lpxF-null F. novicida mutant by either route survived primary infection and subsequently developed protective immunity against a lethal wild-type (WT) F. novicida challenge. To determine the mechanism(s) by which the host controlled primary infection by the lpxF-null mutant, the role of innate immune components, including Toll-like receptor 2 (TLR2), TLR4, caspase-1, MyD88, alpha interferon (IFN-α), and gamma interferon(IFN-γ), was examined using knockout mice. Interestingly, only the IFN-γ knockout mice succumbed to a primary lpxF-null F. novicida mutant infection, highlighting the importance of IFN-γ production. To determine the role of components of the host adaptive immune system that elicit the long-term protective immune response, T- and B-cell deficient RAG1(-/-) mice were examined. All mice survived primary infection; however, RAG1(-/-) mice did not survive WT challenge, highlighting a role for T and B cells in the protective immune response.


Asunto(s)
Francisella/inmunología , Francisella/patogenicidad , Lípido A/metabolismo , Lípido A/toxicidad , Fosfatos/metabolismo , Animales , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Francisella/metabolismo , Técnicas de Inactivación de Genes , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/mortalidad , Infecciones por Bacterias Gramnegativas/patología , Inmunidad Innata , Lípido A/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Receptores Inmunológicos/genética , Análisis de Supervivencia , Virulencia
6.
PLoS Pathog ; 4(2): e24, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18266468

RESUMEN

Francisella tularensis (Ft) is a highly infectious gram-negative bacterium and the causative agent of the human disease tularemia. Ft is designated a class A select agent by the Centers for Disease Control and Prevention. Human clinical isolates of Ft produce lipid A of similar structure to Ft subspecies novicida (Fn), a pathogen of mice. We identified three enzymes required for Fn lipid A carbohydrate modifications, specifically the presence of mannose (flmF1), galactosamine (flmF2), or both carbohydrates (flmK). Mutants lacking either galactosamine (flmF2) or galactosamine/mannose (flmK) addition to their lipid A were attenuated in mice by both pulmonary and subcutaneous routes of infection. In addition, aerosolization of the mutants (flmF2 and flmK) provided protection against challenge with wild-type (WT) Fn, whereas subcutaneous administration of only the flmK mutant provided protection from challenge with WT Fn. Furthermore, infection of an alveolar macrophage cell line by the flmK mutant induced higher levels of tumor necrosis factor-alpha (TNF-alpha) and macrophage inhibitory protein-2 (MIP-2) when compared to infection with WT Fn. Bone marrow-derived macrophages (BMMø) from Toll-like receptor 4 (TLR4) and TLR2/4 knockout mice infected with the flmK mutant also produced significantly higher amounts of interleukin-6 (IL-6) and MIP-2 than BMMø infected with WT Fn. However, production of IL-6 and MIP-2 was undetectable in BMMø from MyD88(-/-) mice infected with either strain. MyD88(-/-) mice were also susceptible to flmK mutant infection. We hypothesize that the ability of the flmK mutant to activate pro-inflammatory cytokine/chemokine production and innate immune responses mediated by the MyD88 signaling pathway may be responsible for its attenuation, leading to the induction of protective immunity by this mutant.


Asunto(s)
Francisella tularensis/fisiología , Genes Bacterianos/genética , Lípido A/metabolismo , Tularemia/microbiología , Animales , Biomarcadores/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/microbiología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Silenciador del Gen , Inmunidad Innata/fisiología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Organismos Libres de Patógenos Específicos , Tularemia/genética , Tularemia/inmunología
7.
Infect Immun ; 77(1): 232-44, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18955478

RESUMEN

Francisella tularensis is a gram-negative, highly infectious, aerosolizable facultative intracellular pathogen that causes the potentially life-threatening disease tularemia. To date there is no approved vaccine available, and little is known about the molecular mechanisms important for infection, survival, and dissemination at different times of infection. We report the first whole-genome screen using an inhalation mouse model to monitor infection in the lung and dissemination to the liver and spleen. We queried a comprehensive library of 2,998 sequence-defined transposon insertion mutants in Francisella novicida strain U112 using a microarray-based negative-selection screen. We were able to track the behavior of 1,029 annotated genes, equivalent to a detection rate of 75% and corresponding to approximately 57% of the entire F. novicida genome. As expected, most transposon mutants retained the ability to colonize, but 125 candidate virulence genes (12%) could not be detected in at least one of the three organs. They fell into a variety of functional categories, with one-third having no annotated function and a statistically significant enrichment of genes involved in transcription. Based on the observation that behavior during complex pool infections correlated with the degree of attenuation during single-strain infection we identified nine genes expected to strongly contribute to infection. These included two genes, those for ATP synthase C (FTN_1645) and thioredoxin (FTN_1415), that when mutated allowed increased host survival and conferred protection in vaccination experiments.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Francisella/genética , Francisella/patogenicidad , Tularemia/microbiología , Factores de Virulencia/genética , Factores de Virulencia/fisiología , Animales , Recuento de Colonia Microbiana , Elementos Transponibles de ADN , Genes Bacterianos , Hígado/microbiología , Pulmón/microbiología , Ratones , Análisis por Micromatrices , Mutagénesis Insercional , Bazo/microbiología , Análisis de Supervivencia , Virulencia
8.
J Clin Invest ; 116(2): 309-21, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16453019

RESUMEN

Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyperplasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This chronic switch in epithelial behavior exhibits genetic susceptibility and depends on persistent activation of EGFR signaling to PI3K that prevents apoptosis of ciliated cells and on IL-13 signaling that promotes transdifferentiation of ciliated to goblet cells. Thus, EGFR blockade (using an irreversible EGFR kinase inhibitor designated EKB-569) prevents virus-induced increases in ciliated and goblet cells whereas IL-13 blockade (using s-IL-13Ralpha2-Fc) exacerbates ciliated cell hyperplasia but still inhibits goblet cell metaplasia. The distinct effects of EGFR and IL-13 inhibitors after viral reprogramming suggest that these combined therapeutic strategies may also correct epithelial architecture in the setting of airway inflammatory disorders characterized by a similar pattern of chronic EGFR activation, IL-13 expression, and ciliated-to-goblet cell metaplasia.


Asunto(s)
Apoptosis/fisiología , Diferenciación Celular/fisiología , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Interleucina-13/metabolismo , Mucosa Respiratoria/citología , Transducción de Señal/fisiología , Animales , Células Cultivadas , Células Epiteliales/citología , Receptores ErbB/genética , Humanos , Hiperplasia , Metaplasia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mucina 5AC , Mucinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Mucosa Respiratoria/patología , Virus/metabolismo
9.
Microbes Infect ; 10(7): 773-80, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18539500

RESUMEN

Francisella tularensis causes the zoonosis tularemia in humans, and inhaled F. tularensis ssp. novicida induces lethal murine tularemia. Transcription of virulence factors in F. novicida is regulated by macrophage growth locus A (mglA), a global regulator required for bacterial replication in macrophages in vitro. We examined the infectivity and immunogenicity of attenuated F. novicida Delta mglA in the lung in vivo. Aerosolized Delta mglA caused replicative pulmonary infection that peaked at 7 days and was cleared thereafter, without clinical evidence of disease. In contrast, inhalation of wild type F. novicida resulted in more rapid bacterial replication and dissemination leading to death within 96 h. Early containment of Delta mglA infection was partially dependent on myeloid differentiation factor 88 and interferon-gamma but did not require B or T cells. However, lymphocytes were necessary for subsequent bacterial clearance. Infection with Delta mglA elicited specific IgG1-predominant antibodies and variable interferon-gamma recall responses to wild type F. novicida. Inoculation of mice with aerosolized Delta mglA afforded no protection against a subsequent low-dose aerosol challenge with wild type F. novicida. These findings establish that inhalation of F. novicida Delta mglA results in replicative infection that elicits innate and adaptive immune responses but not protective immunity against invasive pneumonic tularemia.


Asunto(s)
Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Francisella tularensis/genética , Francisella tularensis/inmunología , Tularemia/prevención & control , Administración por Inhalación , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/genética , Recuento de Colonia Microbiana , Francisella tularensis/patogenicidad , Eliminación de Gen , Humanos , Interferón gamma/metabolismo , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Análisis de Supervivencia , Linfocitos T/inmunología , Vacunas Atenuadas , Factores de Virulencia/genética
10.
Vaccine ; 36(28): 4023-4031, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29861179

RESUMEN

Vaccination can significantly reduce worldwide morbidity and mortality to infectious diseases, thereby reducing the health burden as a result of microbial infections. Effective vaccines contain three components: a delivery system, an antigenic component of the pathogen, and an adjuvant. With the growing use of purely recombinant or synthetic antigens, there is a need to develop novel adjuvants that enhance the protective efficacy of a vaccine against infection. Using a structure-activity relationship (SAR) model, we describe here the synthesis of a novel TLR4 ligand adjuvant compound, BECC438, by bacterial enzymatic combinatorial chemistry (BECC). This compound was identified using an in vitro screening pipeline consisting of (i) NFκB activation and cytokine production by immortalized cell lines, (ii) cytokine production by primary human PBMCs, and (iii) upregulation of surface costimulatory markers by primary human monocyte-derived dendritic cells. Using this SAR screening regimen, BECC438 was shown to produce an innate immune activation profile comparable to the well-characterized TLR4 agonist adjuvant compound, phosphorylated hexa-acyl disaccharide (PHAD). To evaluate the in vivo adjuvant activity of BECC438, we used the known protective Yersinia pestis (Yp) antigen, rF1-V, in a murine prime-boost vaccination schedule followed by lethal challenge. In addition to providing protection from lethal challenge, BECC438 stimulated production of higher levels of rF1-V-specific total IgG as compared to PHAD after both prime and boost vaccinations. Similar to PHAD, BECC438 elicited a balanced IgG1/IgG2c response, indicative of active TH2/TH1-driven immunity. These data demonstrate that the novel BECC-derived TLR4L adjuvant, BECC438, elicits cytokine profiles in vitro similar to PHAD, induces high antigen-specific immune titers and a TH1-associated IgG2c immune titer skew, and protects mice against a lethal Yp challenge.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Lípido A/química , Vacuna contra la Peste/inmunología , Peste/prevención & control , Receptor Toll-Like 4/agonistas , Adyuvantes Inmunológicos/química , Animales , Anticuerpos Antibacterianos/sangre , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Inmunoglobulina G/sangre , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Ratones Endogámicos C57BL , Vacuna contra la Peste/administración & dosificación , Relación Estructura-Actividad , Análisis de Supervivencia , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
11.
mBio ; 8(3)2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28487429

RESUMEN

Adjuvant properties of bacterial cell wall components like MPLA (monophosphoryl lipid A) are well described and have gained FDA approval for use in vaccines such as Cervarix. MPLA is the product of chemically modified lipooligosaccharide (LOS), altered to diminish toxic proinflammatory effects while retaining adequate immunogenicity. Despite the virtually unlimited number of potential sources among bacterial strains, the number of useable compounds within this promising class of adjuvants are few. We have developed bacterial enzymatic combinatorial chemistry (BECC) as a method to generate rationally designed, functionally diverse lipid A. BECC removes endogenous or introduces exogenous lipid A-modifying enzymes to bacteria, effectively reprogramming the lipid A biosynthetic pathway. In this study, BECC is applied within an avirulent strain of Yersinia pestis to develop structurally distinct LOS molecules that elicit differential Toll-like receptor 4 (TLR4) activation. Using reporter cell lines that measure NF-κB activation, BECC-derived molecules were screened for the ability to induce a lower proinflammatory response than Escherichia coli LOS. Their structures exhibit varied, dose-dependent, TLR4-driven NF-κB activation with both human and mouse TLR4 complexes. Additional cytokine secretion screening identified molecules that induce levels of tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8) comparable to the levels induced by phosphorylated hexa-acyl disaccharide (PHAD). The lead candidates demonstrated potent immunostimulation in mouse splenocytes, human primary blood mononuclear cells (PBMCs), and human monocyte-derived dendritic cells (DCs). This newly described system allows directed programming of lipid A synthesis and has the potential to generate a diverse array of TLR4 agonist candidates.IMPORTANCE There is an urgent need to develop effective vaccines against infectious diseases that continue to be major causes of morbidity and mortality worldwide. Making effective vaccines requires selecting an adjuvant to strengthen an appropriate and protective immune response. This work describes a practical method, bacterial enzymatic combinatorial chemistry (BECC), for generating functionally diverse molecules for adjuvant use. These molecules were analyzed in cell culture for their ability to initiate immune stimulatory activity. Several of the assays described herein show promising in vitro cytokine production and costimulatory molecule expression results, suggesting that the BECC molecules may be useful in future vaccine preparations.


Asunto(s)
Adyuvantes Inmunológicos/química , Descubrimiento de Drogas , Lípido A/biosíntesis , Lipopolisacáridos/química , Receptor Toll-Like 4/inmunología , Adyuvantes Inmunológicos/aislamiento & purificación , Animales , Línea Celular , Técnicas Químicas Combinatorias , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Escherichia coli/química , Humanos , Inmunomodulación , Interleucina-8/biosíntesis , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Ligandos , Lípido A/análogos & derivados , Lípido A/química , Lípido A/inmunología , Lípido A/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo , Receptor Toll-Like 4/agonistas , Factor de Necrosis Tumoral alfa/biosíntesis , Yersinia pestis/química
12.
Mol Microbiol ; 62(1): 227-37, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16987180

RESUMEN

Francisella tularensis are the causative agent of the zoonotic disease, tularaemia. Among four F. tularensis subspecies, ssp. novicida (F. novicida) is pathogenic only for immunocompromised individuals, while all four subspecies are pathogenic for mice. This study utilized proteomic and bioinformatic approaches to identify seven F. novicida secreted proteins and the corresponding Type IV pilus (T4P) secretion system. The secreted proteins were predicted to encode two chitinases, a chitin binding protein, a protease (PepO), and a beta-glucosidase (BglX). The transcription of F. novicida pepO and bglX was regulated by the virulence regulator MglA. Intradermal infection of mice with F. novicida mutants defective in T4P secretion system or PepO resulted in enhanced F. novicida spread to systemic sites. Infection with F. novicida pepO mutants also resulted in increased neutrophil infiltration into the mouse airways. PepO is a zinc protease that is homologous to mammalian endothelin-converting enzyme ECE-1. Therefore, secretion of PepO likely results in increased production of endothelin and increased vasoconstriction at the infection site in skin that limits the F. novicida spread. Francisella human pathogenic strains contain a mutation in pepO predicted to abolish its secretion. Loss of PepO function may have contributed to evolution of highly virulent Francisellae.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Fimbrias/genética , Francisella/genética , Animales , Proteínas Bacterianas/metabolismo , Línea Celular , Línea Celular Tumoral , Medios de Cultivo/metabolismo , Proteínas Fimbrias/metabolismo , Francisella/metabolismo , Francisella/patogenicidad , Prueba de Complementación Genética , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Macrófagos/microbiología , Metaloproteasas/genética , Metaloproteasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida/métodos , Mutación/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bazo/microbiología , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA