Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 119(1): 300-331, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613336

RESUMEN

Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.


Asunto(s)
Aclimatación , Arabidopsis , Respuesta al Choque Térmico , Plantones , Arabidopsis/fisiología , Arabidopsis/genética , Plantones/fisiología , Plantones/genética , Respuesta al Choque Térmico/fisiología , Metabolismo Energético , Termotolerancia/fisiología , Cloroplastos/metabolismo , Cloroplastos/fisiología , Mitocondrias/metabolismo , Regulación de la Expresión Génica de las Plantas , Orgánulos/fisiología , Orgánulos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calor , Dinámicas Mitocondriales/fisiología
2.
J Exp Bot ; 73(18): 6115-6132, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35639812

RESUMEN

Small secreted peptides have been described as key contributors to complex signalling networks that control plant development and stress responses. The Brassicaceae-specific PROSCOOP family encodes precursors of Serine riCh endOgenOus Peptides (SCOOPs). In Arabidopsis SCOOP12 has been shown to promote the defence response against pathogens and to be involved in root development. Here, we explore its role as a moderator of Arabidopsis primary root development. We show that the PROSCOOP12 null mutation leads to longer primary roots through the development of longer differentiated cells while PROSCOOP12 overexpression induces dramatic plant growth impairments. In comparison, the exogenous application of synthetic SCOOP12 peptide shortens roots through meristem size and cell length reductions. Moreover, superoxide anion (O2·-) and hydrogen peroxide (H2O2) production in root tips vary according to SCOOP12 abundance. By using reactive oxygen species scavengers that suppress the proscoop12 phenotype, we showed that root growth regulation by SCOOP12 is associated with reactive oxygen species metabolism. Furthermore, our results suggest that peroxidases act as potential SCOOP12 downstream targets to regulate H2O2 production, which in turn triggers cell wall modifications in root. Finally, a massive transcriptional reprogramming, including the induction of genes from numerous other pathways, including ethylene, salicylic acid, and glucosinolates biosynthesis, was observed, emphasizing its dual role in defence and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrógeno/metabolismo , Superóxidos/metabolismo , Glucosinolatos/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo , División Celular , Homeostasis , Péptidos/metabolismo , Ácido Salicílico/metabolismo , Peroxidasas/genética , Serina/metabolismo
3.
BMC Genomics ; 21(1): 566, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811445

RESUMEN

BACKGROUND: Common bacterial blight (CBB) caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans is one of the major threats to common bean crops (Phaseolus vulgaris L.). Resistance to CBB is particularly complex as 26 quantitative resistance loci to CBB have been described so far. To date, transcriptomic studies after CBB infection have been very scarce and the molecular mechanisms underlying susceptibility or resistance are largely unknown. RESULTS: We sequenced and annotated the genomes of two common bean genotypes being either resistant (BAT93) or susceptible (JaloEEP558) to CBB. Reciprocal BLASTp analysis led to a list of 20,787 homologs between these genotypes and the common bean reference genome (G19833), which provides a solid dataset for further comparative analyses. RNA-Seq after inoculation with X. phaseoli pv. phaseoli showed that the susceptible genotype initiated a more intense and diverse biological response than the resistant genotype. Resistance was linked to upregulation of the salicylic acid pathway and downregulation of photosynthesis and sugar metabolism, while susceptibility was linked to downregulation of resistance genes and upregulation of the ethylene pathway and of genes involved in cell wall modification. CONCLUSIONS: This study helps better understanding the mechanisms occurring during the early colonization phase of common bean by Xanthomonas and unveils new actors potentially important for resistance and susceptibility to CBB. We discuss the potential link between the pathways induced during bean colonization and genes induced by transcription activator-like effectors (TALEs), as illustrated in other Xanthomonas pathovars.


Asunto(s)
Phaseolus , Xanthomonas , Regulación hacia Abajo , Phaseolus/genética , Fotosíntesis/genética , Enfermedades de las Plantas/genética , Ácido Salicílico , Regulación hacia Arriba
5.
J Exp Bot ; 70(4): 1349-1365, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30715439

RESUMEN

Small secreted peptides are important players in plant development and stress response. Using a targeted in silico approach, we identified a family of 14 Arabidopsis genes encoding precursors of serine-rich endogenous peptides (PROSCOOP). Transcriptomic analyses revealed that one member of this family, PROSCOOP12, is involved in processes linked to biotic and oxidative stress as well as root growth. Plants defective in this gene were less susceptible to Erwinia amylovora infection and showed an enhanced root growth phenotype. In PROSCOOP12 we identified a conserved motif potentially coding for a small secreted peptide. Exogenous application of synthetic SCOOP12 peptide induces various defense responses in Arabidopsis. Our findings show that SCOOP12 has numerous properties of phytocytokines, activates the phospholipid signaling pathway, regulates reactive oxygen species response, and is perceived in a BAK1 co-receptor-dependent manner.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Genes de Plantas , Péptidos y Proteínas de Señalización Intercelular/fisiología , Familia de Multigenes , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Raíces de Plantas/genética , Transducción de Señal
7.
Plant Cell ; 27(10): 2692-708, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26410298

RESUMEN

Seed longevity, the maintenance of viability during storage, is a crucial factor for preservation of genetic resources and ensuring proper seedling establishment and high crop yield. We used a systems biology approach to identify key genes regulating the acquisition of longevity during seed maturation of Medicago truncatula. Using 104 transcriptomes from seed developmental time courses obtained in five growth environments, we generated a robust, stable coexpression network (MatNet), thereby capturing the conserved backbone of maturation. Using a trait-based gene significance measure, a coexpression module related to the acquisition of longevity was inferred from MatNet. Comparative analysis of the maturation processes in M. truncatula and Arabidopsis thaliana seeds and mining Arabidopsis interaction databases revealed conserved connectivity for 87% of longevity module nodes between both species. Arabidopsis mutant screening for longevity and maturation phenotypes demonstrated high predictive power of the longevity cross-species network. Overrepresentation analysis of the network nodes indicated biological functions related to defense, light, and auxin. Characterization of defense-related wrky3 and nf-x1-like1 (nfxl1) transcription factor mutants demonstrated that these genes regulate some of the network nodes and exhibit impaired acquisition of longevity during maturation. These data suggest that seed longevity evolved by co-opting existing genetic pathways regulating the activation of defense against pathogens.


Asunto(s)
Arabidopsis/genética , Medicago truncatula/genética , Proteínas de Plantas/genética , Semillas/genética , Transcriptoma , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Evolución Biológica , Ambiente , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Germinación , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/fisiología , Mutación , Fenotipo , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/fisiología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Exp Bot ; 68(20): 5539-5552, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29069455

RESUMEN

The heterotrophic lifestyle of parasitic plants relies on the development of the haustorium, a specific infectious organ required for attachment to host roots. While haustorium development is initiated upon chemodetection of host-derived molecules in hemiparasitic plants, the induction of haustorium formation remains largely unknown in holoparasitic species such as Phelipanche ramosa. This work demonstrates that the root exudates of the host plant Brassica napus contain allelochemicals displaying haustorium-inducing activity on P. ramosa germinating seeds, which increases the parasite aggressiveness. A de novo assembled transcriptome and microarray approach with P. ramosa during early haustorium formation upon treatment with B. napus root exudates allowed the identification of differentially expressed genes involved in hormone signaling. Bioassays using exogenous cytokinins and the specific cytokinin receptor inhibitor PI-55 showed that cytokinins induced haustorium formation and increased parasite aggressiveness. Root exudates triggered the expression of cytokinin-responsive genes during early haustorium development in germinated seeds, and bio-guided UPLC-ESI(+)-/MS/MS analysis showed that these exudates contain a cytokinin with dihydrozeatin characteristics. These results suggest that cytokinins constitutively exudated from host roots play a major role in haustorium formation and aggressiveness in P. ramosa.


Asunto(s)
Brassica napus/parasitología , Citocininas/metabolismo , Orobanche/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Orobanche/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología
9.
Funct Integr Genomics ; 16(2): 183-201, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26797431

RESUMEN

In many plant/pathogen interactions, host susceptibility factors are key determinants of disease development promoting pathogen growth and spreading in plant tissues. In the Fusarium head blight (FHB) disease, the molecular basis of wheat susceptibility is still poorly understood while it could provide new insights into the understanding of the wheat/Fusarium graminearum (Fg) interaction and guide future breeding programs to produce cultivars with sustainable resistance. To identify the wheat grain candidate genes, a genome-wide gene expression profiling was performed in the French susceptible wheat cultivar, Recital. Gene-specific two-way ANOVA of about 40 K transcripts at five grain developmental stages identified 1309 differentially expressed genes. Out of these, 536 were impacted by the Fg effect alone. Most of these Fg-responsive genes belonged to biological and molecular functions related to biotic and abiotic stresses indicating the activation of common stress pathways during susceptibility response of wheat grain to FHB. This analysis revealed also 773 other genes displaying either specific Fg-responsive profiles along with grain development stages or synergistic adjustments with the grain development effect. These genes were involved in various molecular pathways including primary metabolism, cell death, and gene expression reprogramming. An increasingly complex host response was revealed, as was the impact of both Fg infection and grain ontogeny on the transcription of wheat genes. This analysis provides a wealth of candidate genes and pathways involved in susceptibility responses to FHB and depicts new clues to the understanding of the susceptibility determinism in plant/pathogen interactions.


Asunto(s)
Grano Comestible/genética , Fusarium/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Transcriptoma , Triticum/genética , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Grano Comestible/crecimiento & desarrollo , Grano Comestible/inmunología , Grano Comestible/microbiología , Fusarium/patogenicidad , Perfilación de la Expresión Génica , Ontología de Genes , Genoma de Planta , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Triticum/crecimiento & desarrollo , Triticum/inmunología , Triticum/microbiología
10.
J Exp Bot ; 66(13): 3737-52, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25922487

RESUMEN

Plant pathogenic bacteria disseminate and survive mainly in association with seeds. This study addresses whether seeds are passive carriers or engage a molecular dialogue with pathogens during their development. We developed two pathosystems using Medicago truncatula with Xanthomonas alfalfae subsp. alfalfae (Xaa), the natural Medicago sp. pathogen and Xanthomonas campestris pv. campestris (Xcc), a Brassicaceae pathogen. Three days after flower inoculation, the transcriptome of Xcc-infected pods showed activation of an innate immune response that was strongly limited in Xcc mutated in the type three secretion system, demonstrating an incompatible interaction of Xcc with the reproductive structures. In contrast, the presence of Xaa did not result in an activation of defence genes. Transcriptome profiling during development of infected seeds exhibited time-dependent and differential responses to Xcc and Xaa. Gene network analysis revealed that the transcriptome of Xcc-infected seeds was mainly affected during seed filling whereas that of Xaa-infected seeds responded during late maturation. The Xcc-infected seed transcriptome exhibited an activation of defence response and a repression of targeted seed maturation pathways. Fifty-one percent of putative ABSCISIC ACID INSENSITIVE3 targets were deregulated by Xcc, including oleosin, cupin, legumin and chlorophyll degradation genes. At maturity, these seeds displayed decreased weight and increased chlorophyll content. In contrast, these traits were not affected by Xaa infection. These findings demonstrate the existence of a complex molecular dialogue between xanthomonads and developing seeds and provides insights into a previously unexplored trade-off between seed development and pathogen defence.


Asunto(s)
Interacciones Huésped-Patógeno , Medicago truncatula/embriología , Medicago truncatula/microbiología , Semillas/embriología , Semillas/microbiología , Clorofila/metabolismo , Epigénesis Genética , Flores/microbiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Interacciones Huésped-Patógeno/genética , Medicago truncatula/genética , Tamaño de los Órganos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción , Semillas/genética , Estrés Fisiológico , Factores de Tiempo , Transcriptoma/genética , Xanthomonas
11.
Plant Cell ; 24(10): 4044-65, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23054470

RESUMEN

The role of NADH-dependent glutamate dehydrogenase (GDH) was investigated by studying the physiological impact of a complete lack of enzyme activity in an Arabidopsis thaliana plant deficient in three genes encoding the enzyme. This study was conducted following the discovery that a third GDH gene is expressed in the mitochondria of the root companion cells, where all three active GDH enzyme proteins were shown to be present. A gdh1-2-3 triple mutant was constructed and exhibited major differences from the wild type in gene transcription and metabolite concentrations, and these differences appeared to originate in the roots. By placing the gdh triple mutant under continuous darkness for several days and comparing it to the wild type, the evidence strongly suggested that the main physiological function of NADH-GDH is to provide 2-oxoglutarate for the tricarboxylic acid cycle. The differences in key metabolites of the tricarboxylic acid cycle in the triple mutant versus the wild type indicated that, through metabolic processes operating mainly in roots, there was a strong impact on amino acid accumulation, in particular alanine, γ-aminobutyrate, and aspartate in both roots and leaves. These results are discussed in relation to the possible signaling and physiological functions of the enzyme at the interface of carbon and nitrogen metabolism.


Asunto(s)
Oxidorreductasas de Alcohol/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Carbono/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Alanina/metabolismo , Oxidorreductasas de Alcohol/análisis , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Arabidopsis/genética , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ácido Aspártico/metabolismo , Ciclo del Ácido Cítrico , Perfilación de la Expresión Génica , Ácidos Cetoglutáricos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Hojas de la Planta/metabolismo , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo
12.
Plant J ; 73(2): 225-39, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22978675

RESUMEN

Inactivation of Arabidopsis WAT1 (Walls Are Thin1), a gene required for secondary cell-wall deposition, conferred broad-spectrum resistance to vascular pathogens, including the bacteria Ralstonia solanacearum and Xanthomonas campestris pv. campestris, and the fungi Verticillium dahliae and Verticillium albo-atrum. Introduction of NahG, the bacterial salicylic acid (SA)-degrading salicylate hydroxylase gene, into the wat1 mutant restored full susceptibility to both R. solanacearum and X. campestris pv. campestris. Moreover, SA content was constitutively higher in wat1 roots, further supporting a role for SA in wat1-mediated resistance to vascular pathogens. By combining transcriptomic and metabolomic data, we demonstrated a general repression of indole metabolism in wat1-1 roots as shown by constitutive down-regulation of several genes encoding proteins of the indole glucosinolate biosynthetic pathway and reduced amounts of tryptophan (Trp), indole-3-acetic acid and neoglucobrassicin, the major form of indole glucosinolate in roots. Furthermore, the susceptibility of the wat1 mutant to R. solanacearum was partially restored when crossed with either the trp5 mutant, an over-accumulator of Trp, or Pro35S:AFB1-myc, in which indole-3-acetic acid signaling is constitutively activated. Our original hypothesis placed cell-wall modifications at the heart of the wat1 resistance phenotype. However, the results presented here suggest a mechanism involving root-localized metabolic channeling away from indole metabolites to SA as a central feature of wat1 resistance to R. solanacearum.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Transporte de Membrana/metabolismo , Ralstonia solanacearum , Ácido Salicílico/metabolismo , Triptófano/metabolismo , Proteínas de Arabidopsis/genética , Hongos/fisiología , Regulación de la Expresión Génica de las Plantas/inmunología , Proteínas de Transporte de Membrana/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas , Pseudomonas syringae , Factores de Tiempo , Xanthomonas campestris
13.
New Phytol ; 203(1): 287-99, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24690119

RESUMEN

Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants.


Asunto(s)
Malus/genética , Procesamiento Postranscripcional del ARN , ARN sin Sentido/genética , ARN Interferente Pequeño/genética , Transcripción Genética , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN de Planta/genética , Análisis de Secuencia de ARN
14.
Plant Physiol ; 163(2): 757-74, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23929721

RESUMEN

In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of seed filling to final maturation drying during the last 3 weeks of seed development in Medicago truncatula. The network revealed distinct coexpression modules related to the acquisition of DT, longevity, and pod abscission. The acquisition of DT and dormancy module was associated with abiotic stress response genes, including late embryogenesis abundant (LEA) genes. The longevity module was enriched in genes involved in RNA processing and translation. Concomitantly, LEA polypeptides accumulated, displaying an 18-d delayed accumulation compared with transcripts. During maturation, gulose and stachyose levels increased and correlated with longevity. A seed-specific network identified known and putative transcriptional regulators of DT, including ABSCISIC ACID-INSENSITIVE3 (MtABI3), MtABI4, MtABI5, and APETALA2/ ETHYLENE RESPONSE ELEMENT BINDING PROTEIN (AtAP2/EREBP) transcription factor as major hubs. These transcriptional activators were highly connected to LEA genes. Longevity genes were highly connected to two MtAP2/EREBP and two basic leucine zipper transcription factors. A heat shock factor was found at the transition of DT and longevity modules, connecting to both gene sets. Gain- and loss-of-function approaches of MtABI3 confirmed 80% of its predicted targets, thereby experimentally validating the network. This study captures the coordinated regulation of seed maturation and identifies distinct regulatory networks underlying the preparation for the dry and quiescent states.


Asunto(s)
Adaptación Fisiológica/genética , Desecación , Redes Reguladoras de Genes/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Longevidad/genética , Medicago truncatula/fisiología , Redes y Vías Metabólicas/genética , Metaboloma/genética , Metabolómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducibilidad de los Resultados , Semillas/fisiología , Transcripción Genética , Transcriptoma/genética
15.
Plant Cell Environ ; 37(1): 54-69, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23639116

RESUMEN

[FeFe]-hydrogenase-like genes encode [Fe4 S4]-containing proteins that are ubiquitous in eukaryotic cells. In humans, iron-only hydrogenase-like protein 1 (IOP1) represses hypoxia inducible factor-1α subunit (HIF1-α) at normal atmospheric partial O2 pressure (normoxia, 21 kPa O2). In yeasts, the nar1 mutant cannot grow at 21 kPa O2, but can develop at a lower O2 pressure (2 kPa O2). We show here that plant [FeFe]-hydrogenase-like GOLLUM genes are essential for plant development and cell cycle progression. The mutant phenotypes of these plants are seen in normoxic conditions, but not under conditions of mild hypoxia (5 kPa O2). Transcriptomic and metabolomic experiments showed that the mutation enhances the expression of some hypoxia-induced genes under normal atmospheric O2 conditions and changes the cellular content of metabolites related to energy metabolism. In conclusion, [FeFe]-hydrogenase-like proteins play a central role in eukaryotes including the adaptation of plants to the ambient O2 partial pressure.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Hidrogenasas/genética , Proteínas Hierro-Azufre/genética , Medicago truncatula/enzimología , Oxígeno/metabolismo , Adaptación Fisiológica , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/fisiología , Metabolismo de los Hidratos de Carbono , Ciclo Celular , Regulación hacia Abajo , Metabolismo Energético , Regulación de la Expresión Génica de las Plantas , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Medicago truncatula/genética , Medicago truncatula/fisiología , Metabolómica , Mutación , Fenotipo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Estrés Fisiológico , Transcriptoma , Regulación hacia Arriba
16.
Plant Cell ; 23(5): 1849-60, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21571951

RESUMEN

In plants, light represents an important environmental signal that triggers the production of photosynthetically active chloroplasts. This developmental switch is critical for plant survival because chlorophyll precursors that accumulate in darkness can be extremely destructive when illuminated. Thus, plants have evolved mechanisms to adaptively control plastid development during the transition into light. Here, we report that the gibberellin (GA)-regulated DELLA proteins play a crucial role in the formation of functional chloroplasts during deetiolation. We show that Arabidopsis thaliana DELLAs accumulating in etiolated cotyledons derepress chlorophyll and carotenoid biosynthetic pathways in the dark by repressing the transcriptional activity of the phytochrome-interacting factor proteins. Accordingly, dark-grown GA-deficient ga1-3 mutants (that accumulate DELLAs) display a similar gene expression pattern to wild-type seedlings grown in the light. Consistent with this, ga1-3 seedlings accumulate higher amounts of protochlorophyllide (a phototoxic chlorophyll precursor) in darkness but, surprisingly, are substantially more resistant to photooxidative damage following transfer into light. This is due to the DELLA-dependent upregulation of the photoprotective enzyme protochlorophyllide oxidoreductase (POR) in the dark. Our results emphasize the role of DELLAs in regulating the levels of POR, protochlorophyllide, and carotenoids in the dark and in protecting etiolated seedlings against photooxidative damage during initial light exposure.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Carotenoides/metabolismo , Clorofila/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Carotenoides/efectos de la radiación , Clorofila/efectos de la radiación , Cotiledón/genética , Cotiledón/fisiología , Cotiledón/efectos de la radiación , Oscuridad , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Luz , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fotoblanqueo , Fitocromo/metabolismo , Protoclorofilida/metabolismo , Protoclorofilida/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
17.
Plant J ; 70(4): 650-65, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22268572

RESUMEN

Plant development and function are underpinned by redox reactions that depend on co-factors such as nicotinamide adenine dinucleotide (NAD). NAD has recently been shown to be involved in several signalling pathways that are associated with stress tolerance or defence responses. However, the mechanisms by which NAD influences plant gene regulation, metabolism and physiology still remain unclear. Here, we took advantage of Arabidopsis thaliana lines that overexpressed the nadC gene from E. coli, which encodes the NAD biosynthesis enzyme quinolinate phosphoribosyltransferase (QPT). Upon incubation with quinolinate, these lines accumulated NAD and were thus used as inducible systems to determine the consequences of an increased NAD content in leaves. Metabolic profiling showed clear changes in several metabolites such as aspartate-derived amino acids and NAD-derived nicotinic acid. Large-scale transcriptomic analyses indicated that NAD promoted the induction of various pathogen-related genes such as the salicylic acid (SA)-responsive defence marker PR1. Extensive comparison with transcriptomic databases further showed that gene expression under high NAD content was similar to that obtained under biotic stress, eliciting conditions or SA treatment. Upon inoculation with the avirulent strain of Pseudomonas syringae pv. tomato Pst-AvrRpm1, the nadC lines showed enhanced resistance to bacteria infection and exhibited an ICS1-dependent build-up of both conjugated and free SA pools. We therefore concluded that higher NAD contents are beneficial for plant immunity by stimulating SA-dependent signalling and pathogen resistance.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , NAD/metabolismo , Pseudomonas syringae/crecimiento & desarrollo , Salicilatos/metabolismo , Arabidopsis/microbiología , Análisis por Conglomerados , Resistencia a la Enfermedad/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interacciones Huésped-Patógeno , Metaboloma/efectos de los fármacos , Metaboloma/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Pseudomonas syringae/fisiología , Ácido Quinolínico/metabolismo , Ácido Quinolínico/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma/genética , Transgenes/genética
18.
PLoS Pathog ; 7(5): e1002035, 2011 05.
Artículo en Inglés | MEDLINE | ID: mdl-21589905

RESUMEN

In Arabidopsis, micro (mi)RNAs and trans-acting (ta-si)RNAs synthesized directly or indirectly through the DICER-LIKE-1 (DCL1) ribonuclease have roles in patterning and hormonal responses, while DCL2,3,4-dependent small-interfering (si)RNAs are mainly involved in silencing of transposable elements and antiviral defense. Viral suppressors of RNA silencing (VSRs) produced by phytoviruses to counter plant defense may perturb plant developmental programs because of the collision of their inhibitory effects with the regulatory action of endogenous miRNAs and ta-siRNAs. This could explain the similar developmental aberrations displayed by Arabidopsis miRNA/ta-siRNA pathway mutants, including dcl1, and by some VSR-expressing plants. Nonetheless, the molecular bases for these morphological aberrations have remained mysterious, and their contribution to viral disease symptoms/virulence unexplored. The extent of VSR inhibitory actions to other types of endogenous small RNAs remains also unclear. Here, we present an in-depth analysis of transgenic Arabidopsis expressing constitutively HcPro, P19 and P15, three unrelated VSRs. We show that VSR expression has comparable, yet modest effects on known miRNA and ta-siRNA target RNA levels, similar to those observed using an hypomorphic dcl1 mutation. However, by combining results of transcriptome studies with deep-sequencing data from immuno-precipitated small RNAs, additional, novel endogenous targets of miRNA and ta-siRNA were identified, unraveling an unsuspected complexity in the origin and scope-of-action of these molecules. Other stringent analyses pinpointed misregulation of the miR167 target AUXIN RESPONSE FACTOR 8 (ARF8) as a major cause for the developmental aberrations exhibited by VSR transgenic plants, but also for the phenotypes induced during normal viral infection caused by the HcPro-encoding Turnip mosaic virus (TuMV). Neither RNA silencing, its suppression by VSRs, nor the virulence/accumulation of TuMV was altered by mutations in ARF8. These findings have important implications for our understanding of viral disease symptoms and small RNA-directed regulation of plant growth/development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Potyvirus/genética , Arabidopsis/virología , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , MicroARNs/genética , Mutación , Fenotipo , Inmunidad de la Planta , Hojas de la Planta , Raíces de Plantas , Tallos de la Planta , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/virología , Potyvirus/patogenicidad , Interferencia de ARN , ARN Interferente Pequeño/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Transcriptoma , Transgenes
19.
Data Brief ; 51: 109784, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053599

RESUMEN

A crucial attribute of potted ornamental plants is compactness characterized by well branched plants with rather short stems bearing numerous flowers. To gain plant compactness, producers use plant growth regulators (PGRs), in particular growth retardants during culture. However, due to their negative environmental impacts, growth retardants are progressively withdrawn from the market. As a response, eco-friendly alternative methods to chemicals need to be developed. One method consists in mimicking mechanical stimulation (MS) imposed by wind on plants which causes reduction in stem elongation, an increase in stem diameter and an increase in branching, all contributing to plant compactness. So far, few plant species were studied under MS and little is known on molecular response mechanisms to MS. This first transcriptomic data after MS in Hydrangea macrophylla will contribute unravelling how plants respond to mechanical stimuli. RNAseq data were obtained from total mRNA of stems collected 15 min before MS and 1, 3, 24 and 72 h after MS treatment. RNA from non-MS treated plants were used as control. MS treatment consisted in 12 consecutive bendings (i.e. 6 forth and 6 back) applied at 9 a.m. during 1 h and for a single day. From RNAseq data a de novo assembly of the transcriptome was produced and 78,398 transcripts functionally annotated. These transcriptomic data also contribute to a better knowledge of how outdoor crop respond to the increasing frequency of strong harmful winds under climate change.

20.
Metabolites ; 13(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36676996

RESUMEN

Alternaria leaf blight, caused by the fungus Alternaria dauci, is the most damaging foliar disease of carrot. Some carrot genotypes exhibit partial resistance to this pathogen and resistance Quantitative Trait Loci (rQTL) have been identified. Co-localization of metabolic QTL and rQTL identified camphene, α-pinene, α-bisabolene, ß-cubebene, caryophyllene, germacrene D and α-humulene as terpenes potentially involved in carrot resistance against ALB. By combining genomic and transcriptomic analyses, we identified, under the co-localization regions, terpene-related genes which are differentially expressed between a resistant and a susceptible carrot genotype. These genes include five terpene synthases and twenty transcription factors. In addition, significant mycelial growth inhibition was observed in the presence of α-humulene and caryophyllene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA