Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474076

RESUMEN

The significant environmental issue of water pollution caused by emerging contaminants underscores the imperative for developing novel cleanup methods that are efficient, economically viable, and that are intended to operate at high capacity and under continuous flows at the industrial scale. This study shows the results of the operational design to build a prototype for the retention at lab scale of pollutant residues in water by using as adsorbent material, insoluble polymers prepared by ß-cyclodextrin and epichlorohydrin as a cross-linking agent. Laboratory in-batch tests were run to find out the adsorbent performances against furosemide and hydrochlorothiazide as pollutant models. The initial evaluation concerning the dosage of adsorbent, pH levels, agitation, and concentration of pharmaceutical pollutants enabled us to identify the optimal conditions for conducting the subsequent experiments. The adsorption kinetic and the mechanisms involved were evaluated revealing that the experimental data perfectly fit the pseudo second-order model, with the adsorption process being mainly governed by chemisorption. With KF constant values of 0.044 (L/g) and 0.029 (L/g) for furosemide and hydrochlorothiazide, respectively, and the determination coefficient (R2) being higher than 0.9 for both compounds, Freundlich yielded the most favorable outcomes, suggesting that the adsorption process occurs on heterogeneous surfaces involving both chemisorption and physisorption processes. The maximum monolayer adsorption capacity (qmax) obtained by the Langmuir isotherm revealed a saturation of the ß-CDs-EPI polymer surface 1.45 times higher for furosemide (qmax = 1.282 mg/g) than hydrochlorothiazide (qmax = 0.844 mg/g). Based on these results, the sizing design and building of a lab-scale model were carried out, which in turn will be used later to evaluate its performance working in continuous flow in a real scenario.


Asunto(s)
Ciclodextrinas , Contaminantes Químicos del Agua , Purificación del Agua , Agua , Furosemida , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Polímeros/química , Adsorción , Cinética , Hidroclorotiazida , Concentración de Iones de Hidrógeno
2.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955538

RESUMEN

Water pollution by dyes is a huge environmental problem; there is a necessity to produce new decolorization methods that are effective, cost-attractive, and acceptable in industrial use. Magnetic cyclodextrin polymers offer the advantage of easy separation from the dye solution. In this work, the ß-CD-EPI-magnetic (ß-cyclodextrin-epichlorohydrin) polymer was synthesized, characterized, and tested for removal of the azo dye Direct Red 83:1 from water, and the fraction of non-adsorbed dye was degraded by an advanced oxidation process. The polymer was characterized in terms of the particle size distribution and surface morphology (FE-SEM), elemental analysis (EA), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), infrared spectrophotometry (IR), and X-ray powder diffraction (XRD). The reported results hint that 0.5 g and pH 5.0 were the best conditions to carry out both kinetic and isotherm models. A 30 min contact time was needed to reach equilibrium with a qmax of 32.0 mg/g. The results indicated that the pseudo-second-order and intraparticle diffusion models were involved in the assembly of Direct Red 83:1 onto the magnetic adsorbent. Regarding the isotherms discussed, the Freundlich model correctly reproduced the experimental data so that adsorption was confirmed to take place onto heterogeneous surfaces. The calculation of the thermodynamic parameters further demonstrates the spontaneous character of the adsorption phenomena (ΔG° = −27,556.9 J/mol) and endothermic phenomena (ΔH° = 8757.1 J/mol) at 25 °C. Furthermore, a good reusability of the polymer was evidenced after six cycles of regeneration, with a negligible decline in the adsorption extent (10%) regarding its initial capacity. Finally, the residual dye in solution after treatment with magnetic adsorbents was degraded by using an advanced oxidation process (AOP) with pulsed light and hydrogen peroxide (343 mg/L); >90% of the dye was degraded after receiving a fluence of 118 J/cm2; the discoloration followed a pseudo first-order kinetics where the degradation rate was 0.0196 cm2/J. The newly synthesized ß-CD-EPI-magnetic polymer exhibited good adsorption properties and separability from water which, when complemented with a pulsed light-AOP, may offer a good alternative to remove dyes such as Direct Red 83:1 from water. It allows for the reuse of both the polymer and the dye in the dyeing process.


Asunto(s)
Compuestos Azo , Contaminantes Químicos del Agua , Adsorción , Compuestos Azo/química , Colorantes/química , Concentración de Iones de Hidrógeno , Cinética , Fenómenos Magnéticos , Polímeros , Termodinámica , Aguas Residuales , Agua/química , Contaminantes Químicos del Agua/química
3.
Molecules ; 25(21)2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139617

RESUMEN

The objective of the present study is to obtain linalool- cyclodextrin (CDs) solid complexes for possible applications in the food industry. For this purpose, a detailed study of linalool complexation was carried out at different pH values, to optimize the type of CDs and reaction medium that support the highest quantity of encapsulated linalool. Once demonstrated the ability of hydroxypropyl-ß-cyclodextrin (HP-ß-CDs), to form inclusion complexes with linalool (KC = 921 ± 21 L mol-1) and given their greater complexation efficacy (6.788) at neutral pH, HP-ß-CDs were selected to produce solid inclusion complexes by using two different energy sources, ultrasounds and microwave irradiation, subsequently spraying the solutions obtained in the Spray Dryer. To provide scientific solidity to the experimental results, the complexes obtained were characterized by using different instrumental techniques in order to confirm the inclusion of linalool in the HP-ß-CDs hydrophobic cavity. The linalool solid complexes obtained were characterized by using 1H nuclear magnetic resonance (1H-NMR) and 2D nuclear magnetic resonance (ROSEY), differential scanning calorimetry, thermogravimetry and Fourier transform infrared spectrometry. Moreover, the structure of the complex obtained were also characterized by molecular modeling.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/química , Monoterpenos Acíclicos/química , Simulación del Acoplamiento Molecular , Rastreo Diferencial de Calorimetría , Concentración de Iones de Hidrógeno
4.
Mol Oncol ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38425123

RESUMEN

In pancreatic ductal adenocarcinoma (PDAC), metabolic rewiring and resistance to standard therapy are closely associated. PDAC cells show enormous requirements for glucose-derived citrate, the first rate-limiting metabolite in the synthesis of new lipids. Both the expression and activity of citrate synthase (CS) are extraordinarily upregulated in PDAC. However, no previous relationship between gemcitabine response and citrate metabolism has been documented in pancreatic cancer. Here, we report for the first time that pharmacological doses of vitamin C are capable of exerting an inhibitory action on the activity of CS, reducing glucose-derived citrate levels. Moreover, ascorbate targets citrate metabolism towards the de novo lipogenesis pathway, impairing fatty acid synthase (FASN) and ATP citrate lyase (ACLY) expression. Lowered citrate availability was found to be directly associated with diminished proliferation and, remarkably, enhanced gemcitabine response. Moreover, the deregulated citrate-derived lipogenic pathway correlated with a remarkable decrease in extracellular pH through inhibition of lactate dehydrogenase (LDH) and overall reduced glycolytic metabolism. Modulation of citric acid metabolism in highly chemoresistant pancreatic adenocarcinoma, through molecules such as vitamin C, could be considered as a future clinical option to improve patient response to standard chemotherapy regimens.

5.
Pharmaceutics ; 14(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36559131

RESUMEN

The aim of this study was to obtain solid carvacrol-cyclodextrin (CD) complexes for use in the pharmaceutical industry. To this end, the complexation of carvacrol at different pH values was studied in detail, to determine the type of CD and the reaction environment that supported the highest amount of encapsulated carvacrol. Evidence of the capability of hydroxypropyl-ß-cyclodextrins (HP-ß-CD) to form inclusion complexes with carvacrol (KC = 5042 ± 176 L mol-1) and more high complexation efficiency (2.824) was demonstrated for HP-ß-CDs using two different energy sources, ultrasound (US) (KC = 8129 ± 194 L mol-1 24 h) and microwave irradiation (MWI) (KC = 6909 ± 161 L mol-1), followed by spraying the resulting solution in a spray dryer. To confirm complex formation, the complexes were characterized using various instrumental methods to corroborate the carvacrol incorporation into the hydrophobic cavity of HP-ß-CD. The obtained carvacrol solid complexes were analyzed by 1H nuclear magnetic resonance (1H-NMR) and 2D nuclear magnetic resonance (ROSEY), differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR) characterization. The structures of the resulting complexes were also characterized by molecular modeling. Furthermore, 1 mM HP-ß-CD-carvacrol complex has been shown to reduce cell proliferation in HCT-116 colorectal cancer cells by 43%, much more than in a healthy lung fibroblast MRC-5 cell line (11%).

6.
Food Chem ; 237: 632-637, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28764045

RESUMEN

Pulsed light (PL) is a non-thermal preservation method in which foods are subjected to one or several intense pulses of wide-spectrum light. Peroxidase (POD) is an enzyme that needs to be inactivated or inhibited because of its deleterious effects on the quality of fruits and vegetables. The feasibility of using PL to inactivate POD was tested and results explained based on measurements of UV-vis spectrum, far-UV circular dichroism and tryptophan fluorescence, and the phase-diagram method. PL reduced the activity of POD by more than 95% after applying 128Jcm-2. There was observed a decrease in the Reinheitzahl value and ellipticity and an increase in tryptophan fluorescence at incremental fluences, as well as linear phase diagrams. The study indicates that the inactivation of POD by PL is an all-or-none process related to loss of helical structure, weak unfolding and ejection of the prostetic group.


Asunto(s)
Armoracia/enzimología , Peroxidasa de Rábano Silvestre/metabolismo , Dicroismo Circular , Luz , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA