Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37175888

RESUMEN

Mitochondria are organelles present in almost all eukaryotic cells, where they represent the main site of energy production. Mitochondria are involved in several important cell processes, such as calcium homeostasis, OXPHOS, autophagy, and apoptosis. Moreover, they play a pivotal role also in inflammation through the inter-organelle and inter-cellular communications, mediated by the release of mitochondrial damage-associated molecular patterns (mtDAMPs). It is currently well-documented that in addition to traditional endocrine and paracrine communication, the cells converse via extracellular vesicles (EVs). These small membrane-bound particles are released from cells in the extracellular milieu under physio-pathological conditions. Importantly, EVs have gained much attention for their crucial role in inter-cellular communication, translating inflammatory signals into recipient cells. EVs cargo includes plasma membrane and endosomal proteins, but EVs also contain material from other cellular compartments, including mitochondria. Studies have shown that EVs may transport mitochondrial portions, proteins, and/or mtDAMPs to modulate the metabolic and inflammatory responses of recipient cells. Overall, the relationship between EVs and mitochondria in inflammation is an active area of research, although further studies are needed to fully understand the mechanisms involved and how they may be targeted for therapeutic purposes. Here, we have reported and discussed the latest studies focused on this fascinating and recent area of research, discussing of tricky connection between mitochondria and EVs in inflammatory-related diseases.


Asunto(s)
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Mitocondrias , Membrana Celular/metabolismo , Orgánulos/metabolismo , Proteínas/metabolismo , Inflamación/metabolismo
2.
Int Rev Cell Mol Biol ; 377: 19-43, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37268349

RESUMEN

Cystic fibrosis (CF) is a genetic disease characterized by mutations of cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to a dysfunctional chloride and bicarbonate channel. Abnormal mucus viscosity, persistent infections and hyperinflammation that preferentially affect the airways, referred to the pathogenesis of CF lung disease. It has largely demonstrated that Pseudomonas aeruginosa (P. aeruginosa) represents the most important pathogen that affect CF patients, leading to worsen inflammation by stimulating pro-inflammatory mediators release and tissue destruction. The conversion to mucoid phenotype and formation of biofilms, together with the increased frequency of mutations, are only few changes that characterize the P. aeruginosa's evolution during CF lung chronic infection. Recently, mitochondria received increasing attention due to their involvement in inflammatory-related diseases, including in CF. Alteration of mitochondrial homeostasis is sufficient to stimulate immune response. Exogenous or endogenous stimuli that perturb mitochondrial activity are used by cells, which, through the mitochondrial stress, potentiate immunity programs. Studies show the relationship between mitochondria and CF, supporting the idea that mitochondrial dysfunction endorses the exacerbation of inflammatory responses in CF lung. In particular, evidences suggest that mitochondria in CF airway cells are more susceptible to P. aeruginosa infection, with consequent detrimental effects that lead to amplify the inflammatory signals. This review discusses the evolution of P. aeruginosa in relationship with the pathogenesis of CF, a fundamental step to establish chronic infection in CF lung disease. Specifically, we focus on the role of P. aeruginosa in the exacerbation of inflammatory response, by triggering mitochondria in CF.


Asunto(s)
Fibrosis Quística , Humanos , Pseudomonas aeruginosa/fisiología , Infección Persistente , Inflamación/genética , Mitocondrias
3.
Biomedicines ; 10(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36009490

RESUMEN

Autophagy is a highly conserved dynamic process by which cells deliver their contents to lysosomes for degradation, thus ensuring cell homeostasis. In response to environmental stress, the induction of autophagy is crucial for cell survival. The dysregulation of this degradative process has been implicated in a wide range of pathologies, including lung diseases, representing a relevant potential target with significant clinical outcomes. During lung disease progression and infections, autophagy may exert both protective and harmful effects on cells. In this review, we will explore the implications of autophagy and its selective forms in several lung infections, such as SARS-CoV-2, Respiratory Syncytial Virus (RSV) and Mycobacterium tuberculosis (Mtb) infections, and different lung diseases such as Cystic Fibrosis (CF), Chronic Obstructive Pulmonary Disease (COPD), and Malignant Mesothelioma (MM).

4.
Biomedicines ; 10(7)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35884904

RESUMEN

Autophagy is an evolutionarily conserved and tightly regulated process that plays an important role in maintaining cellular homeostasis. It involves regulation of various genes that function to degrade unnecessary or dysfunctional cellular components, and to recycle metabolic substrates. Autophagy is modulated by many factors, such as nutritional status, energy level, hypoxic conditions, endoplasmic reticulum stress, hormonal stimulation and drugs, and these factors can regulate autophagy both upstream and downstream of the pathway. In cancer, autophagy acts as a double-edged sword depending on the tissue type and stage of tumorigenesis. On the one hand, autophagy promotes tumor progression in advanced stages by stimulating tumor growth. On the other hand, autophagy inhibits tumor development in the early stages by enhancing its tumor suppressor activity. Moreover, autophagy drives resistance to anticancer therapy, even though in some tumor types, its activation induces lethal effects on cancer cells. In this review, we summarize the biological mechanisms of autophagy and its dual role in cancer. In addition, we report the current understanding of autophagy in some cancer types with markedly high incidence and/or lethality, and the existing therapeutic strategies targeting autophagy for the treatment of cancer.

5.
Front Microbiol ; 12: 789991, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970247

RESUMEN

Merkel cell polyomavirus (MCPyV) is a small DNA tumor virus ubiquitous in humans. MCPyV establishes a clinically asymptomatic lifelong infection in healthy immunocompetent individuals. Viral infections are considered to be risk factors for spontaneous abortion (SA), which is the most common adverse complication of pregnancy. The role of MCPyV in SA remains undetermined. Herein, the impact of MCPyV infection in females affected by SA was investigated. Specifically, an indirect enzyme-linked immunosorbent assay (ELISA) method with two linear synthetic peptides/mimotopes mimicking MCPyV antigens was used to investigate immunoglobulin G (IgG) antibodies against MCPyV in sera from 94 females affected by SA [mean ± standard deviation (SD) age 35 ± (6) years] and from 96 healthy females undergoing voluntary pregnancy interruption [VI, mean (±SD) age 32 ± (7) years]. MCPyV seroprevalence and serological profiles were analyzed. The overall prevalence of serum IgG antibodies against MCPyV was 35.1% (33/94) and 37.5% (36/96) in SA and VI females, respectively (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in females with SA compared to those undergoing VI (p < 0.05), thus indicating a reduced IgG antibody response in SA females. Circulating IgGs were identified in sera from SA and VI females. Our immunological findings indicate that a relatively reduced fraction of pregnant females carry serum anti-MCPyV IgG antibodies, while SA females presented a more pronounced decrease in IgG antibody response to MCPyV. Although yet to be determined, this immunological decrease might prompt an increase in MCPyV multiplication events in females experiencing abortive events. The role of MCPyV in SA, if present, remains to be determined.

6.
Front Immunol ; 12: 738486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733278

RESUMEN

Merkel cell polyomavirus (MCPyV) is the main causative agent of Merkel cell carcinoma (MCC), a rare but aggressive skin tumor with a typical presentation age >60 years. MCPyV is ubiquitous in humans. After an early-age primary infection, MCPyV establishes a clinically asymptomatic lifelong infection. In immunocompromised patients/individuals, including elders, MCC can arise following an increase in MCPyV replication events. Elders are prone to develop immunesenescence and therefore represent an important group to investigate. In addition, detailed information on MCPyV serology in elders has been debated. These findings cumulatively indicate the need for new research verifying the impact of MCPyV infection in elderly subjects (ES). Herein, sera from 226 ES, aged 66-100 years, were analyzed for anti-MCPyV IgGs with an indirect ELISA using peptides mimicking epitopes from the MCPyV capsid proteins VP1-2. Immunological data from sera belonging to a cohort of healthy subjects (HS) (n = 548) aged 18-65 years, reported in our previous study, were also included for comparisons. Age-/gender-specific seroprevalence and serological profiles were investigated. MCPyV seroprevalence in ES was 63.7% (144/226). Age-specific MCPyV seroprevalence resulted as 62.5% (25/40), 71.7% (33/46), 64.9% (37/57), 63.8% (30/47), and 52.8% (19/36) in ES aged 66-70, 71-75, 76-80, 81-85, and 86-100 years, respectively (p > 0.05). MCPyV seroprevalence was 67% (71/106) and 61% (73/120) in ES males and females, respectively (p > 0.05). Lack of age-/gender-related variations in terms of MCPyV serological profiles was found in ES (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in ES compared with HS (p < 0.05), while lower ODs were also determined in ES males compared with HS males (p < 0.05). Our data cumulatively suggest that oncogenic MCPyV circulates in elders asymptomatically at a relatively high prevalence, while immunesenescence might be responsible for a decreased IgG antibody response to MCPyV, thereby potentially leading to an increase in MCPyV replication levels. In the worse scenario, alongside other factors, MCPyV might drive MCC carcinogenesis, as described in elders with over 60 years of age.


Asunto(s)
Envejecimiento/inmunología , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Inmunoglobulina G/sangre , Inmunosenescencia , Poliomavirus de Células de Merkel/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/sangre , Epítopos , Femenino , Voluntarios Sanos , Interacciones Huésped-Patógeno , Humanos , Masculino , Poliomavirus de Células de Merkel/patogenicidad , Persona de Mediana Edad , Adulto Joven
7.
Nutrients ; 13(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34444791

RESUMEN

Traditional medicines rely mainly on use of plant extracts to mitigate or treat a wide range of disorders, including those that affect skeletal homeostasis. In this study, we investigated for the first time the potential pro-osteogenic effects of hexane, acetone and methanol extracts of the leaves of Cucurbita moschata, a very popular pumpkin cultivar in Western countries. We found that in Cucurbita moschata leaves, there are acetone-extractable substances-in particular, fatty acids such as 13-OH-9Z,11E,15E-octadecatrienoic acid (PU-13OH-FA), which is capable of both stimulating the function of human primary osteoblasts, which are responsible for bone formation, and inhibiting the differentiation of human osteoclasts, which are responsible for bone resorption. This dual effect was monitored by analyzing Runx2 expression, deposition of mineralized matrix, ALP activity, TRAP and actin ring staining respectively. This study suggests that bioactive chemicals from Cucurbita moschata leaves are potentially suitable as therapeutics for managing metabolic bone disorders such as osteoporosis and rheumatoid arthritis, and promoting tissue healing and functional recovery after bone fractures. The data we obtained increase knowledge on the biological activities of Cucurbita moschata, and in particular underline the potential benefits of consuming leaves which are a part of the plant currently little considered in the Western world.


Asunto(s)
Cucurbita/química , Osteogénesis/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Cultivo Primario de Células/métodos , Resorción Ósea , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ácidos Dicarboxílicos , Humanos , Persona de Mediana Edad , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA