Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Xenobiotica ; 43(10): 875-85, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23527529

RESUMEN

1. IPI-926 is a novel semisynthetic cyclopamine derivative that is a potent and selective Smoothened inhibitor that blocks the hedgehog signal transduction pathway. 2. The in vivo clearance of IPI-926 is low in mouse and dog and moderate in monkey. The volume of distribution is high across species. Oral bioavailability ranges from moderate in monkey to high in mouse and dog. Predicted human clearance using simple allometry is low (24 L h(-1)), predicted volume of distribution is high (469 L) and predicted half-life is long (20 h). 3. IPI-926 is highly bound to plasma proteins and has minimal interaction with human α-1-acid glycoprotein. 4. In vitro metabolic stability ranges from stable to moderately stable. Twelve oxidative metabolites were detected in mouse, rat, dog, monkey and human liver microsome incubations and none were unique to human. 5. IPI-926 is not a potent reversible inhibitor of CYP1A2, 2C8, 2C9 or 3A4 (testosterone). IPI-926 is a moderate inhibitor of CYP2C19, 2D6 and 3A4 (midazolam) with KI values of 19, 16 and 4.5 µM, respectively. IPI-926 is both a substrate and inhibitor (IC50 = 1.9 µM) of P-glycoprotein. 6. In summary, IPI-926 has desirable pre-clinical absorption, distribution, metabolism and excretion properties.


Asunto(s)
Alcaloides de Veratrum/farmacocinética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Administración Oral , Animales , Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Hidrocarburo de Aril Hidroxilasas/metabolismo , Disponibilidad Biológica , Citocromo P-450 CYP2C19 , Perros , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Femenino , Semivida , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/metabolismo , Hepatocitos/metabolismo , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/metabolismo , Orosomucoide/metabolismo , Ratas Sprague-Dawley , Distribución Tisular , Alcaloides de Veratrum/administración & dosificación , Alcaloides de Veratrum/metabolismo
2.
Clin Cancer Res ; 29(10): 1984-1995, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37071496

RESUMEN

PURPOSE: Inhibitors of Bruton's tyrosine kinase (BTKi) and PI3K (PI3Ki) have significantly improved therapy of chronic lymphocytic leukemia (CLL). However, the emergence of resistance to BTKi has introduced an unmet therapeutic need. Hence, we sought evidence for essential roles of PI3K-δi and PI3K-γi in treatment-naïve and BTKi-refractory CLL. EXPERIMENTAL DESIGN: Responses to PI3K-δi, PI3K-γi, and the dual-inhibitor duvelisib in each B, T, and myeloid cell compartments of CLL were studied in vitro, and in a xenograft mouse model using primary cells from treatment-naïve and ibrutinib-resistant patients, and finally, in a patient with ibrutinib-resistant CLL treated with duvelisib. RESULTS: We demonstrate the essential roles of PI3K-δ for CLL B-cell survival and migration, of PI3K-γ for T-cell migration and macrophage polarization, and of dual inhibition of PI3K-δ,γ for efficacious reduction of leukemia burden. We also show that samples from patients whose disease progressed on ibrutinib were responsive to duvelisib therapy in a xenograft model, irrespective of BTK mutations. In support of this, we report a patient with ibrutinib-resistant CLL, bearing a clone with BTK and PLCγ2 mutations, who responded immediately to single-agent duvelisib with redistribution lymphocytosis followed by a partial clinical remission associated with modulation of T and myeloid cells. CONCLUSIONS: Our data define the mechanism of action whereby dual inhibition of PI3K-δ,γ affects CLL B-cell numbers and T and myeloid cell pro-leukemia functions and support the use of duvelisib as a valuable approach for therapeutic interventions, including for patients refractory to BTKi.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Animales , Ratones , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Xenoinjertos , Purinas , Agammaglobulinemia Tirosina Quinasa , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
3.
J Immunother Cancer ; 8(1)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32345627

RESUMEN

BACKGROUND: CD47 is a broadly expressed cell surface glycoprotein associated with immune evasion. Interaction with the inhibitory receptor signal regulatory protein alpha (SIRPα), primarily expressed on myeloid cells, normally serves to restrict effector function (eg, phagocytosis and immune cell homeostasis). CD47/SIRPα antagonists, commonly referred to as 'macrophage checkpoint' inhibitors, are being developed as cancer interventions. SRF231 is an investigational fully human IgG4 anti-CD47 antibody that is currently under evaluation in a phase 1 clinical trial. The development and preclinical characterization of SRF231 are reported here. METHODS: SRF231 was characterized in assays designed to probe CD47/SIRPα blocking potential and effects on red blood cell (RBC) phagocytosis and agglutination. Additionally, SRF231-mediated phagocytosis and cell death were assessed in macrophage:tumor cell in vitro coculture systems. Further mechanistic studies were conducted within these coculture systems to ascertain the dependency of SRF231-mediated antitumor activity on Fc receptor engagement vs CD47/SIRPα blockade. In vivo, SRF231 was evaluated in a variety of hematologic xenograft models, and the mechanism of antitumor activity was assessed using cytokine and macrophage infiltration analyses following SRF231 treatment. RESULTS: SRF231 binds CD47 and disrupts the CD47/SIRPα interaction without causing hemagglutination or RBC phagocytosis. SRF231 exerts antitumor activity in vitro through both phagocytosis and cell death in a manner dependent on the activating Fc-gamma receptor (FcγR), CD32a. Through its Fc domain, SRF231 engagement with macrophage-derived CD32a serves dual purposes by eliciting FcγR-mediated phagocytosis of cancer cells and acting as a scaffold to drive CD47-mediated death signaling into tumor cells. Robust antitumor activity occurs across multiple hematologic xenograft models either as a single agent or in combination with rituximab. In tumor-bearing mice, SRF231 increases tumor macrophage infiltration and induction of the macrophage cytokines, mouse chemoattractant protein 1 and macrophage inflammatory protein 1 alpha. Macrophage depletion results in diminished SRF231 antitumor activity, underscoring a mechanistic role for macrophage engagement by SRF231. CONCLUSION: SRF231 elicits antitumor activity via apoptosis and phagocytosis involving macrophage engagement in a manner dependent on the FcγR, CD32a.


Asunto(s)
Antígeno CD47/metabolismo , Neoplasias/genética , Receptores de IgG/metabolismo , Animales , Humanos , Ratones , Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
PLoS One ; 9(3): e90534, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24608250

RESUMEN

A requisite step for canonical Hedgehog (Hh) pathway activation by Sonic Hedgehog (Shh) ligand is accumulation of Smoothened (Smo) to the primary cilium (PC). Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one of which is approved for the treatment of advanced basal cell carcinoma. Recent reports demonstrate that various Smo antagonists differentially impact Smo localization to the PC while still exerting inhibitory activity. In contrast to other synthetic small molecule Smo antagonists, the natural product cyclopamine binds to and promotes ciliary accumulation of Smo and "primes" cells for Hh pathway hyper-responsiveness after compound withdrawal. We compared the properties of IPI-926, a semi-synthetic cyclopamine analog, to cyclopamine with regard to potency, ciliary Smo accumulation, and Hh pathway activity after compound withdrawal. Like cyclopamine, IPI-926 promoted accumulation of Smo to the PC. However, in contrast to cyclopamine, IPI-926 treatment did not prime cells for hyper-responsiveness to Shh stimulation after compound withdrawal, but instead demonstrated continuous inhibition of signaling. By comparing the levels of drug-induced ciliary Smo accumulation with the degree of Hh pathway activity after compound withdrawal, we propose that a critical threshold of ciliary Smo is necessary for "priming" activity to occur. This "priming" appears achievable with cyclopamine, but not IPI-926, and is cell-line dependent. Additionally, IPI-926 activity was evaluated in a murine tumor xenograft model and a pharmacokinetic/pharmacodynamic relationship was examined to assess for in vivo evidence of Hh pathway hyper-responsiveness. Plasma concentrations of IPI-926 correlated with the degree and duration of Hh pathway suppression, and pathway activity did not exceed baseline levels out to 96 hours post dose. The overall findings suggest that IPI-926 possesses unique biophysical and pharmacological properties that result in Hh pathway inhibition in a manner that differentiates it from cyclopamine.


Asunto(s)
Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Alcaloides de Veratrum/farmacología , Animales , Línea Celular , Cilios/efectos de los fármacos , Humanos , Ratones , Células 3T3 NIH , Transducción de Señal/efectos de los fármacos , Receptor Smoothened
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA