Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Oral Health ; 21(1): 640, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911520

RESUMEN

BACKGROUND: The aetiology of oral cancer is multifactorial, as various risk factors (genetics, socioeconomic and lifestyle factors) contribute to its development. Data in the literature suggest that people with periodontal disease have an increased risk of developing oral cancer, and the severity of periodontitis correlates with the appearance of oral squamous cell carcinoma. The aim of this study was to revise the non-genetic risk factors that may influence the development of OC, while focusing on the dental and periodontal status and OH. METHODS: Two hundred patients (hundred diagnosed with oral cancer and hundred without oral cancer) were enrolled in our case-control study, to evaluate the association between oral cancer and the presence and severity of periodontitis, while examining several risk factors that might be responsible for oral cancer formation. A questionnaire customised for oral cancer patients was used to obtain the socioeconomic and lifestyle risk factors that may influence the development of oral squamous cell carcinoma. The dental and periodontal status along with the level of oral hygiene was recorded quantitatively. The chi-square and Mann-Whitney tests and logistic regression were used for the statistical analysis. RESULTS: By considering both the case and the control groups, a significant correlation was found between the incidence of oral cancer and some socioeconomic factors and lifestyle habits, such as the sex, age, education and alcohol consumption of an individual. The mean value of the Silness-Löe plaque index was significantly higher in the case population. The number of completely edentulous patients was higher among the oral cancer population. The incidence of oral cancer was 57.1% in patients with periodontal disease. In comparison, the incidence of oral squamous cell carcinoma was only 28.6% among the patients without periodontitis. Most of the oral cancer patients (72.1%) had stage 4 periodontitis. On the other hand, the vast majority of the control group (51.6%) had stage 2 periodontitis. CONCLUSION: Periodontitis can be an individual risk factor for oral cancer development. Periodontally compromised individuals should be strictly monitored, especially those with severe periodontitis and coexisting lifestyle risk factors. Maintaining their periodontal health in at-risk patients can minimize cancer risks.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Periodontitis , Carcinoma de Células Escamosas/epidemiología , Carcinoma de Células Escamosas/etiología , Estudios de Casos y Controles , Humanos , Neoplasias de la Boca/epidemiología , Neoplasias de la Boca/etiología , Índice Periodontal , Periodontitis/complicaciones , Periodontitis/epidemiología , Factores de Riesgo
2.
Crit Rev Biotechnol ; 38(3): 423-437, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28882077

RESUMEN

In many biomedical applications, titanium forms an interface with tissues, which is crucial to ensure its long-term stability and safety. In order to exert control over this process, titanium implants have been treated with various methods that induce physicochemical changes at nano and microscales. In the past 20 years, most of the studies have been conducted to see the effect of topographical and physicochemical changes of titanium surface after surface treatments on cells behavior and bacteria adhesion. In this review, we will first briefly present some of these surface treatments either chemical or physical and we explain the biological responses to titanium with a specific focus on adverse immune reactions. More recently, a new trend has emerged in titanium surface science with a focus on the crystalline phase of titanium dioxide and the associated biological responses. In these recent studies, rutile and anatase are the major two polymorphs used for biomedical applications. In the second part of this review, we consider this emerging topic of the control of the crystalline phase of titanium and discuss its potential biological impacts. More in-depth analysis of treatment-related surface crystalline changes can significantly improve the control over titanium/host tissue interface and can result in considerable decreases in implant-related complications, which is currently a big burden on the healthcare system.


Asunto(s)
Tecnología Biomédica/métodos , Titanio/química , Antibacterianos/farmacología , Cristalización , Implantes Experimentales , Propiedades de Superficie
3.
Orv Hetil ; 155(39): 1544-8, 2014 Sep 28.
Artículo en Húngaro | MEDLINE | ID: mdl-25240876

RESUMEN

INTRODUCTION: The cardiac catheter is an intravascular catheter, which is introduced or implanted into the heart for diagnostic or therapeutic reasons. The catheters may break or king during their introduction and/or removal. AIM: The aim of the authors was to study the pliability of two catheters with the same material but different diameters according to the Food and Drug Administration's recommendation. METHOD: The bending points, diameter decrease, deflection, and their correlation and dependence on the distance from the tip, as well as the influence of the initial diameter of the catheters were determined. The bending of catheters was performed on 9 bending points (120-280 mm from the tip by 20 mm) on 16 gauges with different radius (10-2.5 mm by 0.5 mm). RESULTS: A linear dependency between the diameter decrease and deflection was observed, which was independent from the placement of the measurement in both catheters examined. The larger initial diameter had significant (p = 0.05) greater diameter decrease than the smaller, but the curves characteristic of the diameter decrease and deflection were similar. CONCLUSIONS: The applied method seems to be useful for the examination of weak points of cardiac catheters.


Asunto(s)
Cateterismo Cardíaco/instrumentación , Docilidad , Diseño de Equipo , Humanos
4.
Nanomaterials (Basel) ; 13(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36770473

RESUMEN

Our research group developed a novel nano-pitted (NP) TiO2 surface on grade 2 titanium that showed good mechanical, osteogenic, and antibacterial properties; however, it showed weak hydrophilicity. Our objective was to develop a surface treatment method to enhance the hydrophilicity of the NP TiO2 surface without the destruction of the nano-topography. The effects of dilute and concentrated orthophosphoric (H3PO4) and nitric acids were investigated on wettability using contact angle measurement. Optical profilometry and atomic force microscopy were used for surface roughness measurement. The chemical composition of the TiO2 surface and the oxidation state of Ti was investigated using X-ray photoelectron spectroscopy. The ccH3PO4 treatment significantly increased the wettability of the NP TiO2 surfaces (30°) compared to the untreated control (88°). The quantity of the absorbed phosphorus significantly increased following ccH3PO4 treatment compared to the control and caused the oxidation state of titanium to decrease (Ti4+ → Ti3+). Owing to its simplicity and robustness the presented surface treatment method may be utilized in the industrial-scale manufacturing of titanium implants.

5.
Mater Sci Eng C Mater Biol Appl ; 78: 69-78, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28576039

RESUMEN

OBJECTIVE: The objective of this study was to investigate the reproducibility, mechanical integrity, surface characteristics and corrosion behavior of nanotubular (NT) titanium oxide arrays in comparison with a novel nano-pitted (NP) anodic film. METHODS: Surface treatment processes were developed to grow homogenous NT and NP anodic films on the surface of grade 2 titanium discs and dental implants. The effect of process parameters on the surface characteristics and reproducibility of the anodic films was investigated and optimized. The mechanical integrity of the NT and NP anodic films were investigated by scanning electron microscopy, surface roughness measurement, scratch resistance and screwing tests, while the chemical and physicochemical properties were investigated in corrosion tests, contact angle measurement and X-ray photoelectron spectroscopy (XPS). RESULTS AND DISCUSSION: The growth of NT anodic films was highly affected by process parameters, especially by temperature, and they were apt to corrosion and exfoliation. In contrast, the anodic growth of NP film showed high reproducibility even on the surface of 3-dimensional screw dental implants and they did not show signs of corrosion and exfoliation. The underlying reason of the difference in the tendency for exfoliation of the NT and NP anodic films is unclear; however the XPS analysis revealed fluorine dopants in a magnitude larger concentration on NT anodic film than on NP surface, which was identified as a possible causative. Concerning other surface characteristics that are supposed to affect the biological behavior of titanium implants, surface roughness values were found to be similar, whereas considerable differences were revealed in the wettability of the NT and NP anodic films. CONCLUSION: Our findings suggest that the applicability of NT anodic films on the surface of titanium bone implants may be limited because of mechanical considerations. In contrast, it is worth to consider the applicability of nano-pitted anodic films over nanotubular arrays for the enhancement of the biological properties of titanium implants.


Asunto(s)
Nanotubos/química , Corrosión , Implantes Dentales , Materiales Dentales , Microscopía Electrónica de Rastreo , Reproducibilidad de los Resultados , Propiedades de Superficie , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA