Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 33(12): 13808-13824, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31638418

RESUMEN

N-acetylaspartate (NAA) is synthesized by aspartate N-acetyltransferase (gene: Nat8l) from acetyl-coenzyme A and aspartate. In the brain, NAA is considered an important energy metabolite for lipid synthesis. However, the role of NAA in peripheral tissues remained elusive. Therefore, we characterized the metabolic phenotype of knockout (ko) and adipose tissue-specific (ako) Nat8l-ko mice as well as NAA-supplemented mice on various diets. We identified an important role of NAA availability in the brain during adolescence, as 75% of Nat8l-ko mice died on fat-free diet (FFD) after weaning but could be rescued by NAA supplementation. In adult life, NAA deficiency promotes a beneficial metabolic phenotype, as Nat8l-ko and Nat8l-ako mice showed reduced body weight, increased energy expenditure, and improved glucose tolerance on chow, high-fat, and FFDs. Furthermore, Nat8l-deficient adipocytes exhibited increased mitochondrial respiration, ATP synthesis, and an induction of browning. Conversely, NAA-treated wild-type mice showed reduced adipocyte respiration and lipolysis and increased de novo lipogenesis, culminating in reduced energy expenditure, glucose tolerance, and insulin sensitivity. Mechanistically, our data point to a possible role of NAA as modulator of pancreatic insulin secretion and suggest NAA as a critical energy metabolite for adipocyte and whole-body energy homeostasis.-Hofer, D. C., Zirkovits, G., Pelzmann, H. J., Huber, K., Pessentheiner, A. R., Xia, W., Uno, K., Miyazaki, T., Kon, K., Tsuneki, H., Pendl, T., Al Zoughbi, W., Madreiter-Sokolowski, C. T., Trausinger, G., Abdellatif, M., Schoiswohl, G., Schreiber, R., Eisenberg, T., Magnes, C., Sedej, S., Eckhardt, M., Sasahara, M., Sasaoka, T., Nitta, A., Hoefler, G., Graier, W. F., Kratky, D., Auwerx, J., Bogner-Strauss, J. G. N-acetylaspartate availability is essential for juvenile survival on fat-free diet and determines metabolic health.


Asunto(s)
Ácido Aspártico/análogos & derivados , Acetilcoenzima A/metabolismo , Acetiltransferasas/metabolismo , Adipocitos/metabolismo , Animales , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Dieta con Restricción de Grasas , Metabolismo Energético/fisiología , Resistencia a la Insulina/fisiología , Lipólisis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo
2.
FASEB J ; 31(9): 4088-4103, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28559441

RESUMEN

Adipocyte plasma membrane-associated protein (APMAP) has been described as an adipogenic factor in 3T3-L1 cells with unknown biochemical function; we therefore aimed to investigate the physiologic function of APMAP in vivo We generated Apmap-knockout mice and challenged them with an obesogenic diet to investigate their metabolic phenotype. We identified a novel truncated adipocyte-specific isoform of APMAP in mice that is produced by alternative transcription. Mice lacking the full-length APMAP protein, the only isoform that is expressed in humans, have an improved metabolic phenotype upon diet-induced obesity, indicated by enhanced insulin sensitivity, preserved glucose tolerance, increased respiratory exchange ratio, decreased inflammatory marker gene expression, and reduced adipocyte size. At the molecular level, APMAP interacts with the extracellular collagen cross-linking matrix proteins lysyl oxidase-like 1 and 3. On a high-fat diet, the expression of lysyl oxidase-like 1 and 3 is strongly decreased in Apmap-knockout mice, paralleled by reduced expression of profibrotic collagens and total collagen content in epididymal white adipose tissue, indicating decreased fibrotic potential. Together, our data suggest that APMAP is a novel regulator of extracellular matrix components, and establish that APMAP is a potential target to mitigate obesity-associated insulin resistance.-Pessentheiner, A. R., Huber, K., Pelzmann, H. J., Prokesch, A., Radner, F. P. W., Wolinski, H., Lindroos-Christensen, J., Hoefler, G., Rülicke, T., Birner-Gruenberger, R., Bilban, M., Bogner-Strauss, J. G. APMAP interacts with lysyl oxidase-like proteins, and disruption of Apmap leads to beneficial visceral adipose tissue expansion.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Regulación de la Expresión Génica/fisiología , Grasa Intraabdominal/metabolismo , Glicoproteínas de Membrana/metabolismo , Adipocitos/citología , Adipocitos/fisiología , Aminoácido Oxidorreductasas/genética , Animales , Tamaño de la Célula , Dieta Alta en Grasa , Regulación hacia Abajo , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Obesidad , Isoformas de Proteínas
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(3): 358-368, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28017862

RESUMEN

The importance of peroxisomes for adipocyte function is poorly understood. Herein, we provide insights into the critical role of peroxin 16 (PEX16)-mediated peroxisome biogenesis in adipocyte development and lipid metabolism. Pex16 is highly expressed in adipose tissues and upregulated during adipogenesis of murine and human cells. We demonstrate that Pex16 is a target gene of the adipogenesis "master-regulator" PPARγ. Stable silencing of Pex16 in 3T3-L1 cells strongly reduced the number of peroxisomes while mitochondrial number was unaffected. Concomitantly, peroxisomal fatty acid (FA) oxidation was reduced, thereby causing accumulation of long- and very long-chain (polyunsaturated) FAs and reduction of odd-chain FAs. Further, Pex16-silencing decreased cellular oxygen consumption and increased FA release. Additionally, silencing of Pex16 impaired adipocyte differentiation, lipogenic and adipogenic marker gene expression, and cellular triglyceride stores. Addition of PPARγ agonist rosiglitazone and peroxisome-related lipid species to Pex16-silenced 3T3-L1 cells rescued adipogenesis. These data provide evidence that PEX16 is required for peroxisome biogenesis and highlights the relevance of peroxisomes for adipogenesis and adipocyte lipid metabolism.


Asunto(s)
Adipocitos Blancos/metabolismo , Homeostasis/fisiología , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Células 3T3-L1 , Adipogénesis/fisiología , Animales , Células COS , Diferenciación Celular/fisiología , Línea Celular , Chlorocebus aethiops , Ácidos Grasos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Consumo de Oxígeno/fisiología , PPAR gamma/metabolismo , Regulación hacia Arriba/fisiología
4.
J Biol Chem ; 288(50): 36040-51, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24155240

RESUMEN

NAT8L (N-acetyltransferase 8-like) catalyzes the formation of N-acetylaspartate (NAA) from acetyl-CoA and aspartate. In the brain, NAA delivers the acetate moiety for synthesis of acetyl-CoA that is further used for fatty acid generation. However, its function in other tissues remained elusive. Here, we show for the first time that Nat8l is highly expressed in adipose tissues and murine and human adipogenic cell lines and is localized in the mitochondria of brown adipocytes. Stable overexpression of Nat8l in immortalized brown adipogenic cells strongly increases glucose incorporation into neutral lipids, accompanied by increased lipolysis, indicating an accelerated lipid turnover. Additionally, mitochondrial mass and number as well as oxygen consumption are elevated upon Nat8l overexpression. Concordantly, expression levels of brown marker genes, such as Prdm16, Cidea, Pgc1α, Pparα, and particularly UCP1, are markedly elevated in these cells. Treatment with a PPARα antagonist indicates that the increase in UCP1 expression and oxygen consumption is PPARα-dependent. Nat8l knockdown in brown adipocytes has no impact on cellular triglyceride content, lipogenesis, or oxygen consumption, but lipolysis and brown marker gene expression are increased; the latter is also observed in BAT of Nat8l-KO mice. Interestingly, the expression of ATP-citrate lyase is increased in Nat8l-silenced adipocytes and BAT of Nat8l-KO mice, indicating a compensatory mechanism to sustain the acetyl-CoA pool once Nat8l levels are reduced. Taken together, our data show that Nat8l impacts on the brown adipogenic phenotype and suggests the existence of the NAT8L-driven NAA metabolism as a novel pathway to provide cytosolic acetyl-CoA for lipid synthesis in adipocytes.


Asunto(s)
Acetiltransferasas/metabolismo , Adipocitos Marrones/metabolismo , Metabolismo Energético , Metabolismo de los Lípidos , Acetilcoenzima A/metabolismo , Acetiltransferasas/deficiencia , Acetiltransferasas/genética , Adipocitos Marrones/citología , Adipocitos Marrones/enzimología , Adipogénesis , Animales , Proteínas de Ciclo Celular/metabolismo , Regulación Enzimológica de la Expresión Génica , Técnicas de Inactivación de Genes , Silenciador del Gen , Humanos , Canales Iónicos/metabolismo , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Tamaño Mitocondrial , PPAR alfa/metabolismo , Fenotipo , Fosfoproteínas/metabolismo , Proteínas Quinasas/genética , Transporte de Proteínas , Proteína Desacopladora 1 , Regulación hacia Arriba
5.
BMC Genomics ; 14: 758, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24191950

RESUMEN

BACKGROUND: Fasting induces specific molecular and metabolic adaptions in most organisms. In biomedical research fasting is used in metabolic studies to synchronize nutritional states of study subjects. Because there is a lack of standardization for this procedure, we need a deeper understanding of the dynamics and the molecular mechanisms in fasting. RESULTS: We investigated the dynamic changes of liver gene expression and serum parameters of mice at several time points during a 48 hour fasting experiment and then focused on the global gene expression changes in epididymal white adipose tissue (WAT) as well as on pathways common to WAT, liver, and skeletal muscle. This approach produced several intriguing insights: (i) rather than a sequential activation of biochemical pathways in fasted liver, as current knowledge dictates, our data indicates a concerted parallel response; (ii) this first characterization of the transcriptome signature of WAT of fasted mice reveals a remarkable activation of components of the transcription apparatus; (iii) most importantly, our bioinformatic analyses indicate p53 as central node in the regulation of fasting in major metabolic tissues; and (iv) forced expression of Ddit4, a fasting-regulated p53 target gene, is sufficient to augment lipolysis in cultured adipocytes. CONCLUSIONS: In summary, this combination of focused and global profiling approaches provides a comprehensive molecular characterization of the processes operating during fasting in mice and suggests a role for p53, and its downstream target Ddit4, as novel components in the transcriptional response to food deprivation.


Asunto(s)
Factores de Transcripción/metabolismo , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Línea Celular , Privación de Alimentos , Perfilación de la Expresión Génica , Gluconeogénesis , Lipogénesis , Lipólisis , Hígado/metabolismo , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Músculo Esquelético/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/genética , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba
6.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 337-348, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30595160

RESUMEN

The discovery of significant amounts of metabolically active brown adipose tissue (BAT) in adult humans renders it a promising target for anti-obesity therapies by inducing weight loss through increased energy expenditure. The components of the N-acetylaspartate (NAA) pathway are highly abundant in BAT. Aspartate N-acetyltransferase (Asp-NAT, encoded by Nat8l) synthesizes NAA from acetyl-CoA and aspartate and increases energy expenditure in brown adipocytes. However, the exact mechanism how the NAA pathway contributes to accelerated mobilization and oxidation of lipids and the physiological regulation of the NAA pathway remained elusive. Here, we demonstrate that the expression of NAA pathway genes corresponds to nutrient availability and specifically responds to changes in exogenous glucose. NAA is preferentially produced from glucose-derived acetyl-CoA and aspartate and its concentration increases during adipogenesis. Overexpression of Nat8l drains glucose-derived acetyl-CoA into the NAA pool at the expense of cellular lipids and certain amino acids. Mechanistically, we elucidated that a combined activation of neutral and lysosomal (acid) lipolysis is responsible for the increased lipid degradation. Specifically, translocation of the transcription factor EB to the nucleus activates the biosynthesis of autophagosomes and lysosomes. Lipid degradation within lysosomes accompanied by adipose triglyceride lipase-mediated lipolysis delivers fatty acids for the support of elevated mitochondrial respiration. Together, our data suggest a crucial role of the NAA pathway in energy metabolism and metabolic adaptation in BAT.


Asunto(s)
Adipocitos Marrones/metabolismo , Ácido Aspártico/análogos & derivados , Nutrientes/metabolismo , Acetilcoenzima A/metabolismo , Acetiltransferasas/metabolismo , Adipocitos Marrones/fisiología , Adipogénesis/genética , Adipogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Animales , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Ácido Aspártico/fisiología , Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Oxidación-Reducción
7.
PLoS One ; 8(11): e79134, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24236098

RESUMEN

Our knowledge about adipocyte metabolism and development is steadily growing, yet many players are still undefined. Here, we show that α/ß-hydrolase domain containing protein 15 (Abhd15) is a direct and functional target gene of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipogenesis. In line, Abhd15 is mainly expressed in brown and white adipose tissue and strongly upregulated during adipogenesis in various murine and human cell lines. Stable knockdown of Abhd15 in 3T3-L1 cells evokes a striking differentiation defect, as evidenced by low lipid accumulation and decreased expression of adipocyte marker genes. In preconfluent cells, knockdown of Abhd15 leads to impaired proliferation, which is caused by apoptosis, as we see an increased SubG1 peak, caspase 3/7 activity, and BAX protein expression as well as a reduction in anti-apoptotic BCL-2 protein. Furthermore, apoptosis-inducing amounts of palmitic acid evoke a massive increase of Abhd15 expression, proposing an apoptosis-protecting role for ABHD15. On the other hand, in mature adipocytes physiological (i.e. non-apoptotic) concentrations of palmitic acid down-regulate Abhd15 expression. Accordingly, we found that the expression of Abhd15 in adipose tissue is reduced in physiological situations with high free fatty acid levels, like high-fat diet, fasting, and aging as well as in genetically obese mice. Collectively, our results position ABHD15 as an essential component in the development of adipocytes as well as in apoptosis, thereby connecting two substantial factors in the regulation of adipocyte number and size. Together with its intricate regulation by free fatty acids, ABHD15 might be an intriguing new target in obesity and diabetes research.


Asunto(s)
Apoptosis , Hidrolasas de Éster Carboxílico/genética , Proteínas de la Membrana/genética , Células 3T3-L1 , Adipogénesis , Animales , Hidrolasas de Éster Carboxílico/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Regulación Enzimológica de la Expresión Génica , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , PPAR gamma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA