Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 32(5): 1749-1767, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32169960

RESUMEN

In plants, changes in cell size and shape during development fundamentally depend on the ability to synthesize and modify cell wall polysaccharides. The main classes of cell wall polysaccharides produced by terrestrial plants are cellulose, hemicelluloses, and pectins. Members of the cellulose synthase (CESA) and cellulose synthase-like (CSL) families encode glycosyltransferases that synthesize the ß-1,4-linked glycan backbones of cellulose and most hemicellulosic polysaccharides that comprise plant cell walls. Cellulose microfibrils are the major load-bearing component in plant cell walls and are assembled from individual ß-1,4-glucan polymers synthesized by CESA proteins that are organized into multimeric complexes called CESA complexes, in the plant plasma membrane. During distinct modes of polarized cell wall deposition, such as in the tip growth that occurs during the formation of root hairs and pollen tubes or de novo formation of cell plates during plant cytokinesis, newly synthesized cell wall polysaccharides are deposited in a restricted region of the cell. These processes require the activity of members of the CESA-like D subfamily. However, while these CSLD polysaccharide synthases are essential, the nature of the polysaccharides they synthesize has remained elusive. Here, we use a combination of genetic rescue experiments with CSLD-CESA chimeric proteins, in vitro biochemical reconstitution, and supporting computational modeling and simulation, to demonstrate that Arabidopsis (Arabidopsis thaliana) CSLD3 is a UDP-glucose-dependent ß-1,4-glucan synthase that forms protein complexes displaying similar ultrastructural features to those formed by CESA6.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Pared Celular/metabolismo , Glucanos/metabolismo , Glucosiltransferasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Biocatálisis/efectos de los fármacos , Pared Celular/efectos de los fármacos , Detergentes/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosiltransferasas/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Mutación/genética , Regiones Promotoras Genéticas/genética , Dominios Proteicos , Proteolípidos/metabolismo , Solubilidad
2.
Plant Cell ; 32(7): 2367-2382, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32354790

RESUMEN

Xylans are a major component of plant cell walls. O-Acetyl moieties are the dominant backbone substituents of glucuronoxylan in dicots and play a major role in the polymer-polymer interactions that are crucial for wall architecture and normal plant development. Here, we describe the biochemical, structural, and mechanistic characterization of Arabidopsis (Arabidopsis thaliana) xylan O-acetyltransferase 1 (XOAT1), a member of the plant-specific Trichome Birefringence Like (TBL) family. Detailed characterization of XOAT1-catalyzed reactions by real-time NMR confirms that it exclusively catalyzes the 2-O-acetylation of xylan, followed by nonenzymatic acetyl migration to the O-3 position, resulting in products that are monoacetylated at both O-2 and O-3 positions. In addition, we report the crystal structure of the catalytic domain of XOAT1, which adopts a unique conformation that bears some similarities to the α/ß/α topology of members of the GDSL-like lipase/acylhydrolase family. Finally, we use a combination of biochemical analyses, mutagenesis, and molecular simulations to show that XOAT1 catalyzes xylan acetylation through formation of an acyl-enzyme intermediate, Ac-Ser-216, by a double displacement bi-bi mechanism involving a Ser-His-Asp catalytic triad and unconventionally uses an Arg residue in the formation of an oxyanion hole.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polisacáridos/metabolismo , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arginina/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana , Modelos Moleculares , Mutación , Conformación Proteica , Xilanos/metabolismo
3.
Nature ; 517(7533): 165-169, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25567280

RESUMEN

Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a 'selfish' model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.


Asunto(s)
Bacteroidetes/metabolismo , Tracto Gastrointestinal/microbiología , Mananos/metabolismo , Modelos Biológicos , Levaduras/química , Animales , Bacteroidetes/citología , Bacteroidetes/enzimología , Bacteroidetes/genética , Evolución Biológica , Conformación de Carbohidratos , Dieta , Enzimas/genética , Enzimas/metabolismo , Femenino , Sitios Genéticos/genética , Vida Libre de Gérmenes , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Masculino , Mananos/química , Manosa/metabolismo , Ratones , Modelos Moleculares , Oligosacáridos/química , Oligosacáridos/metabolismo , Periplasma/enzimología
4.
J Cell Biochem ; 120(8): 13056-13065, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30873675

RESUMEN

Amino acid mixtures (AAM) are protein substitutes used for phenylketonuria treatment, but their metabolic effects have not been well characterized. The objective of this study was to compare the acute glycemic response to free amino acids (free AA) from AAM with the response to intact protein (iProtein). Male Wistar rats (n = 14) were administered by gavage a bolus of free AA (n = 7) or iProtein as albumin (n = 7) containing equivalent amounts of nitrogen. Blood glucose and insulin levels were measured at baseline and 15, 30, 60 and 120 minutes later, when gut GLP-1 content and pancreatic insulin, GLP-1 receptor and Ki67 expression were quantified at 120 minutes time point. After AAM, glucose area under the curve (free AA vs iProtein; P < 0.01), serum insulin levels at 120 minutes (free AA vs iProtein; P < 0.05), colon GLP-1 content (free AA vs iProtein; P < 0.01), pancreatic GLP-1 receptor (free AA vs iProtein; P < 0.01) and insulin expression (free AA vs iProtein; p < 0.01) were significantly lower as compared with iProtein. AAM increased Ki67 expression in pancreatic islets (free AA vs iProtein; P < 0.05). In conclusion, this study demonstrated that acute response to AAM differs from iProtein and is characterized by a lower glucose excursion, along with a decrease in gut GLP-1 and pancreatic GLP-1 receptor and insulin. This data suggests the modulation of glycemia by free AA is mediated by the incretin axis.


Asunto(s)
Albúminas/administración & dosificación , Aminoácidos/administración & dosificación , Glucemia/metabolismo , Insulina/sangre , Páncreas/metabolismo , Animales , Colon/efectos de los fármacos , Colon/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Incretinas/metabolismo , Insulina/análisis , Antígeno Ki-67/metabolismo , Masculino , Páncreas/efectos de los fármacos , Ratas Wistar , Factores de Tiempo
5.
Plant J ; 91(6): 931-949, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28670741

RESUMEN

The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely because of the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase 1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2-fucosyl residues to xyloglucan side chains - a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X-ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable the sufficient production of the enzyme for X-ray crystallography, which reveals the structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. The lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water-mediated fucosylation mechanism facilitated by an H-bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations.


Asunto(s)
Arabidopsis/enzimología , Fucosiltransferasas/química , Glucanos/química , Modelos Estructurales , Xilanos/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Glicosilación , Simulación de Dinámica Molecular , Mutagénesis , Agua/metabolismo , Galactósido 2-alfa-L-Fucosiltransferasa
6.
Planta ; 247(4): 953-971, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29288327

RESUMEN

MAIN CONCLUSION: The diversification of the Lemnoideae was accompanied by a reduction in the abundance of cell wall apiogalacturonan and an increase in xylogalacturonan whereas rhamnogalacturonan II structure and cross-linking are conserved. The subfamily Lemnoideae is comprised of five genera and 38 species of small, fast-growing aquatic monocots. Lemna minor and Spirodela polyrhiza belong to this subfamily and have primary cell walls that contain large amounts of apiogalacturonan and thus are distinct from the primary walls of most other flowering plants. However, the pectins in the cell walls of other members of the Lemnoideae have not been investigated. Here, we show that apiogalacturonan decreased substantially as the Lemnoideae diversified since Wolffiella and Wolffia walls contain between 63 and 88% less apiose than Spirodela, Landoltia, and Lemna walls. In Wolffia, the most derived genus, xylogalacturonan is far more abundant than apiogalacturonan, whereas in Wolffiella pectic polysaccharides have a high arabinose content, which may arise from arabinan sidechains of RG I. The apiose-containing pectin rhamnogalacturonan II (RG-II) exists in Lemnoideae walls as a borate cross-linked dimer and has a glycosyl sequence similar to RG-II from terrestrial plants. Nevertheless, species-dependent variations in the extent of methyl-etherification of RG-II sidechain A and arabinosylation of sidechain B are discernible. Immunocytochemical studies revealed that pectin methyl-esterification is higher in developing daughter frond walls than in mother frond walls, indicating that methyl-esterification is associated with expanding cells. Our data support the notion that a functional cell wall requires conservation of RG-II structure and cross-linking but can accommodate structural changes in other pectins. The Lemnoideae provide a model system to study the mechanisms by which wall structure and composition has changed in closely related plants with similar growth habits.


Asunto(s)
Araceae/metabolismo , Pared Celular/química , Ácidos Hexurónicos/análisis , Pectinas/química , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Araceae/genética , Araceae/ultraestructura , Variación Genética , Immunoblotting , Pectinas/análisis , Filogenia , Polisacáridos/análisis
7.
J Nat Prod ; 80(7): 2161-2165, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28678491

RESUMEN

A novel diterpenoid, gaditanone (2), which possesses an unprecedented 5/6/4/6-fused gaditanane tetracyclic ring skeleton, and a new jatrophane (1) were isolated from the aerial parts of Euphorbia gaditana. The chemical structures and absolute configurations were determined by extensive spectroscopic NMR studies and ECD data analysis. A proposed biosynthetic pathway is presented for compound 2.


Asunto(s)
Diterpenos/aislamiento & purificación , Euphorbia/química , Vías Biosintéticas , Diterpenos/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , España
8.
Planta ; 244(3): 589-606, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27105886

RESUMEN

MAIN CONCLUSION: Xylans in the cell walls of monocots are structurally diverse. Arabinofuranose-containing glucuronoxylans are characteristic of commelinids. However, other structural features are not correlated with the major transitions in monocot evolution. Most studies of xylan structure in monocot cell walls have emphasized members of the Poaceae (grasses). Thus, there is a paucity of information regarding xylan structure in other commelinid and in non-commelinid monocot walls. Here, we describe the major structural features of the xylans produced by plants selected from ten of the twelve monocot orders. Glucuronoxylans comparable to eudicot secondary wall glucuronoxylans are abundant in non-commelinid walls. However, the α-D-glucuronic acid/4-O-methyl-α-D-glucuronic acid is often substituted at O-2 by an α-L-arabinopyranose residue in Alismatales and Asparagales glucuronoxylans. Glucuronoarabinoxylans were the only xylans detected in the cell walls of five different members of the Poaceae family (grasses). By contrast, both glucuronoxylan and glucuronoarabinoxylan are formed by the Zingiberales and Commelinales (commelinids). At least one species of each monocot order, including the Poales, forms xylan with the reducing end sequence -4)-ß-D-Xylp-(1,3)-α-L-Rhap-(1,2)-α-D-GalpA-(1,4)-D-Xyl first identified in eudicot and gymnosperm glucuronoxylans. This sequence was not discernible in the arabinopyranose-containing glucuronoxylans of the Alismatales and Asparagales or the glucuronoarabinoxylans of the Poaceae. Rather, our data provide additional evidence that in Poaceae glucuronoarabinoxylan, the reducing end xylose residue is often substituted at O-2 with 4-O-methyl glucuronic acid or at O-3 with arabinofuranose. The variations in xylan structure and their implications for the evolution and biosynthesis of monocot cell walls are discussed.


Asunto(s)
Alismatales/química , Asparagales/química , Pared Celular/química , Xilanos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
9.
Plant Physiol ; 167(4): 1296-306, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673778

RESUMEN

Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Galactosa/metabolismo , Galactosiltransferasas/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Pared Celular/química , Galactosiltransferasas/genética , Glucanos/química , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Mutación , Pectinas/metabolismo , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Polisacáridos/metabolismo , Xilanos/química
11.
Plant J ; 80(2): 197-206, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25141999

RESUMEN

Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally because of collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis; however, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10-L (IRX10-L) and ESKIMO1/TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways used by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Xilanos/biosíntesis , Acetilación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Planta ; 242(5): 1123-38, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26067758

RESUMEN

MAIN CONCLUSION: Chemical analyses and glycome profiling demonstrate differences in the structures of the xyloglucan, galactomannan, glucuronoxylan, and rhamnogalacturonan I isolated from soybean ( Glycine max ) roots and root hair cell walls. The root hair is a plant cell that extends only at its tip. All other root cells have the ability to grow in different directions (diffuse growth). Although both growth modes require controlled expansion of the cell wall, the types and structures of polysaccharides in the walls of diffuse and tip-growing cells from the same plant have not been determined. Soybean (Glycine max) is one of the few plants whose root hairs can be isolated in amounts sufficient for cell wall chemical characterization. Here, we describe the structural features of rhamnogalacturonan I, rhamnogalacturonan II, xyloglucan, glucomannan, and 4-O-methyl glucuronoxylan present in the cell walls of soybean root hairs and roots stripped of root hairs. Irrespective of cell type, rhamnogalacturonan II exists as a dimer that is cross-linked by a borate ester. Root hair rhamnogalacturonan I contains more neutral oligosaccharide side chains than its root counterpart. At least 90% of the glucuronic acid is 4-O-methylated in root glucuronoxylan. Only 50% of this glycose is 4-O-methylated in the root hair counterpart. Mono O-acetylated fucose-containing subunits account for at least 60% of the neutral xyloglucan from root and root hair walls. By contrast, a galacturonic acid-containing xyloglucan was detected only in root hair cell walls. Soybean homologs of the Arabidopsis xyloglucan-specific galacturonosyltransferase are highly expressed only in root hairs. A mannose-rich polysaccharide was also detected only in root hair cell walls. Our data demonstrate that the walls of tip-growing root hairs cells have structural features that distinguish them from the walls of other roots cells.


Asunto(s)
Pared Celular/química , Glucanos/química , Glycine max/química , Mananos/química , Pectinas/química , Raíces de Plantas/química , Xilanos/química , Galactosa/análogos & derivados
13.
Plant Cell ; 24(11): 4511-24, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23175743

RESUMEN

Root hairs provide a model system to study plant cell growth, yet little is known about the polysaccharide compositions of their walls or the role of these polysaccharides in wall expansion. We report that Arabidopsis thaliana root hair walls contain a previously unidentified xyloglucan that is composed of both neutral and galacturonic acid-containing subunits, the latter containing the ß-D-galactosyluronic acid-(1→2)-α-D-xylosyl-(1→ and/or α-L-fucosyl-(1→2)-ß-D-galactosyluronic acid-(1→2)-α-D-xylosyl-(1→) side chains. Arabidopsis mutants lacking root hairs have no acidic xyloglucan. A loss-of-function mutation in At1g63450, a root hair-specific gene encoding a family GT47 glycosyltransferase, results in the synthesis of xyloglucan that lacks galacturonic acid. The root hairs of this mutant are shorter than those of the wild type. This mutant phenotype and the absence of galacturonic acid in the root xyloglucan are complemented by At1g63450. The leaf and stem cell walls of wild-type Arabidopsis contain no acidic xyloglucan. However, overexpression of At1g63450 led to the synthesis of galacturonic acid-containing xyloglucan in these tissues. We propose that At1g63450 encodes XYLOGLUCAN-SPECIFIC GALACTURONOSYLTRANSFERASE1, which catalyzes the formation of the galactosyluronic acid-(1→2)-α-D-xylopyranosyl linkage and that the acidic xyloglucan is present only in root hair cell walls. The role of the acidic xyloglucan in root hair tip growth is discussed.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glucanos/química , Raíces de Plantas/genética , Xilanos/química , Arabidopsis/química , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Expresión Génica , Glucanos/metabolismo , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Ácidos Hexurónicos/análisis , Ácidos Hexurónicos/metabolismo , Mutación , Especificidad de Órganos , Fenotipo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Tallos de la Planta/química , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Xilanos/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(35): 14253-8, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22893684

RESUMEN

The hemicellulose 4-O-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants. However, the biochemical mechanisms leading to the formation of this polysaccharide and the effects of modulating its structure on the physical properties of the cell wall are poorly understood. We have identified and functionally characterized an Arabidopsis glucuronoxylan methyltransferase (GXMT) that catalyzes 4-O-methylation of the glucuronic acid substituents of this polysaccharide. AtGXMT1, which was previously classified as a domain of unknown function (DUF) 579 protein, specifically transfers the methyl group from S-adenosyl-L-methionine to O-4 of α-D-glucopyranosyluronic acid residues that are linked to O-2 of the xylan backbone. Biochemical characterization of the recombinant enzyme indicates that GXMT1 is localized in the Golgi apparatus and requires Co(2+) for optimal activity in vitro. Plants lacking GXMT1 synthesize glucuronoxylan in which the degree of 4-O-methylation is reduced by 75%. This result is correlated to a change in lignin monomer composition and an increase in glucuronoxylan release during hydrothermal treatment of secondary cell walls. We propose that the DUF579 proteins constitute a previously undescribed family of cation-dependent, polysaccharide-specific O-methyl-transferases. This knowledge provides new opportunities to selectively manipulate polysaccharide O-methylation and extends the portfolio of structural targets that can be modified either alone or in combination to modulate biopolymer interactions in the plant cell wall.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ácido Glucurónico/metabolismo , Metiltransferasas/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Catálisis , Cationes/metabolismo , Pared Celular/enzimología , Éteres/metabolismo , Aparato de Golgi/metabolismo , Lignina/metabolismo , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Mutagénesis/fisiología , Polisacáridos/metabolismo , Estructura Terciaria de Proteína/fisiología , Xilanos/biosíntesis
15.
Proc Natl Acad Sci U S A ; 109(17): 6537-42, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22492980

RESUMEN

The degradation of the plant cell wall by glycoside hydrolases is central to environmentally sustainable industries. The major polysaccharides of the plant cell wall are cellulose and xylan, a highly decorated ß-1,4-xylopyranose polymer. Glycoside hydrolases displaying multiple catalytic functions may simplify the enzymes required to degrade plant cell walls, increasing the industrial potential of these composite structures. Here we test the hypothesis that glycoside hydrolase family 43 (GH43) provides a suitable scaffold for introducing additional catalytic functions into enzymes that target complex structures in the plant cell wall. We report the crystal structure of Humicola insolens AXHd3 (HiAXHd3), a GH43 arabinofuranosidase that hydrolyses O3-linked arabinose of doubly substituted xylans, a feature of the polysaccharide that is recalcitrant to degradation. HiAXHd3 displays an N-terminal five-bladed ß-propeller domain and a C-terminal ß-sandwich domain. The interface between the domains comprises a xylan binding cleft that houses the active site pocket. Substrate specificity is conferred by a shallow arabinose binding pocket adjacent to the deep active site pocket, and through the orientation of the xylan backbone. Modification of the rim of the active site introduces endo-xylanase activity, whereas the resultant enzyme variant, Y166A, retains arabinofuranosidase activity. These data show that the active site of HiAXHd3 is tuned to hydrolyse arabinofuranosyl or xylosyl linkages, and it is the topology of the distal regions of the substrate binding surface that confers specificity. This report demonstrates that GH43 provides a platform for generating bespoke multifunctional enzymes that target industrially significant complex substrates, exemplified by the plant cell wall.


Asunto(s)
Arabinosa/análogos & derivados , Endo-1,4-beta Xilanasas/metabolismo , Enzimas/metabolismo , Arabinosa/química , Arabinosa/metabolismo , Ascomicetos/enzimología , Secuencia de Carbohidratos , Dominio Catalítico , Cristalografía por Rayos X , Endo-1,4-beta Xilanasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Especificidad por Sustrato
16.
Cell Surf ; 9: 100101, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36748082

RESUMEN

•Xylan is an abundant carbohydrate component of plant cell walls that is vital for proper cell wall structure and vascular tissue development.•Xylan structure is known to vary between different tissues and species.•The role of xylan in the plant cell wall is to interact with cellulose, lignin, and hemicelluloses.•Xylan synthesis is directed by several types of Golgi-localized enzymes.•Xylan is being explored as an eco-friendly resource for diverse commercial applications.

17.
Essays Biochem ; 67(3): 639-652, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36960794

RESUMEN

Glycosyltransferases (GTs) are carbohydrate-active enzymes that are encoded by the genomes of organisms spanning all domains of life. GTs catalyze glycosidic bond formation, transferring a sugar monomer from an activated donor to an acceptor substrate, often another saccharide. GTs from family 47 (GT47, PF03016) are involved in the synthesis of complex glycoproteins in mammals and insects and play a major role in the synthesis of almost every class of polysaccharide in plants, with the exception of cellulose, callose, and mixed linkage ß-1,3/1,4-glucan. GT47 enzymes adopt a GT-B fold and catalyze the formation of glycosidic bonds through an inverting mechanism. Unlike animal genomes, which encode few GT47 enzymes, plant genomes contain 30 or more diverse GT47 coding sequences. Our current knowledge of the GT47 family across plant species brings us an interesting view, showcasing how members exhibit a great diversity in both donor and acceptor substrate specificity, even for members that are classified in the same phylogenetic clade. Thus, we discuss how plant GT47 family members represent a great case to study the relationship between substrate specificity, protein structure, and protein evolution. Most of the plant GT47 enzymes that are identified to date are involved in biosynthesis of plant cell wall polysaccharides, including xyloglucan, xylan, mannan, and pectins. This indicates unique and crucial roles of plant GT47 enzymes in cell wall formation. The aim of this review is to summarize findings about GT47 enzymes and highlight new challenges and approaches on the horizon to study this family.


Asunto(s)
Glicosiltransferasas , Plantas , Animales , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Filogenia , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Genoma de Planta , Especificidad por Sustrato , Mamíferos/metabolismo
18.
J Biol Chem ; 286(17): 15483-95, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21339299

RESUMEN

Reflecting the diverse chemistry of plant cell walls, microorganisms that degrade these composite structures synthesize an array of glycoside hydrolases. These enzymes are organized into sequence-, mechanism-, and structure-based families. Genomic data have shown that several organisms that degrade the plant cell wall contain a large number of genes encoding family 43 (GH43) glycoside hydrolases. Here we report the biochemical properties of the GH43 enzymes of a saprophytic soil bacterium, Cellvibrio japonicus, and a human colonic symbiont, Bacteroides thetaiotaomicron. The data show that C. japonicus uses predominantly exo-acting enzymes to degrade arabinan into arabinose, whereas B. thetaiotaomicron deploys a combination of endo- and side chain-cleaving glycoside hydrolases. Both organisms, however, utilize an arabinan-specific α-1,2-arabinofuranosidase in the degradative process, an activity that has not previously been reported. The enzyme can cleave α-1,2-arabinofuranose decorations in single or double substitutions, the latter being recalcitrant to the action of other arabinofuranosidases. The crystal structure of the C. japonicus arabinan-specific α-1,2-arabinofuranosidase, CjAbf43A, displays a five-bladed ß-propeller fold. The specificity of the enzyme for arabinan is conferred by a surface cleft that is complementary to the helical backbone of the polysaccharide. The specificity of CjAbf43A for α-1,2-l-arabinofuranose side chains is conferred by a polar residue that orientates the arabinan backbone such that O2 arabinose decorations are directed into the active site pocket. A shelflike structure adjacent to the active site pocket accommodates O3 arabinose side chains, explaining how the enzyme can target O2 linkages that are components of single or double substitutions.


Asunto(s)
Bacteroides/enzimología , Cellvibrio/enzimología , Glicósido Hidrolasas/química , Arabinosa/análogos & derivados , Arabinosa/metabolismo , Dominio Catalítico , Colon/microbiología , Cristalografía por Rayos X , Humanos
19.
Glycobiology ; 22(3): 439-51, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22048859

RESUMEN

Glucuronoxylans with a backbone of 1,4-linked ß-D-xylosyl residues are ubiquitous in the secondary walls of gymnosperms and angiosperms. Xylans have been reported to be present in hornwort cell walls, but their structures have not been determined. In contrast, the presence of xylans in the cell walls of mosses and liverworts remains a subject of debate. Here we present data that unequivocally establishes that the cell walls of leafy tissue and axillary hair cells of the moss Physcomitrella patens contain a glucuronoxylan that is structurally similar to glucuronoxylans in the secondary cell walls of vascular plants. Some of the 1,4-linked ß-D-xylopyranosyl residues in the backbone of this glucuronoxylan bear an α-D-glucosyluronic acid (GlcpA) sidechain at O-2. In contrast, the lycopodiophyte Selaginella kraussiana synthesizes a glucuronoxylan substituted with 4-O-Me-α-D-GlcpA sidechains, as do many hardwood species. The monilophyte Equisetum hyemale produces a glucuronoxylan with both 4-O-Me-α-D-GlcpA and α-D-GlcpA sidechains, as does Arabidopsis. The seedless plant glucuronoxylans contain no discernible amounts of the reducing-end sequence that is characteristic of gymnosperm and eudicot xylans. Phylogenetic studies showed that the P. patens genome contains genes with high sequence similarity to Arabidopsis CAZy family GT8, GT43 and GT47 glycosyltransferases that are likely involved in xylan synthesis. We conclude that mosses synthesize glucuronoxylan that is structurally similar to the glucuronoxylans present in the secondary cell walls of lycopodiophytes, monilophytes, and many seed-bearing plants, and that several of the glycosyltransferases required for glucuronoxylan synthesis evolved before the evolution of tracheophytes.


Asunto(s)
Bryopsida/metabolismo , Evolución Molecular , Helechos/genética , Xilanos/biosíntesis , Bryopsida/citología , Bryopsida/enzimología , Bryopsida/genética , Conformación de Carbohidratos , Pared Celular/metabolismo , Helechos/metabolismo , Genoma de Planta , Glucuronatos/química , Glicosiltransferasas/genética , Oligosacáridos/química , Filogenia , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Haz Vascular de Plantas/genética , Plantas/anatomía & histología , Plantas/genética , Plantas/metabolismo
20.
ACS Mater Au ; 2(4): 440-452, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35856073

RESUMEN

Xylans are a diverse family of hemicellulosic polysaccharides found in abundance within the cell walls of nearly all flowering plants. Unfortunately, naturally occurring xylans are highly heterogeneous, limiting studies of their synthesis and structure-function relationships. Here, we demonstrate that xylan synthase 1 from the charophyte alga Klebsormidium flaccidum is a powerful biocatalytic tool for the bottom-up synthesis of pure ß-1,4 xylan polymers that self-assemble into microparticles in vitro. Using uridine diphosphate-xylose (UDP-xylose) and defined saccharide primers as substrates, we demonstrate that the shape, composition, and properties of the self-assembling xylan microparticles could be readily controlled via the fine structure of the xylan oligosaccharide primer used to initiate polymer elongation. Furthermore, we highlight two approaches for bottom-up and surface functionalization of xylan microparticles with chemical probes and explore the susceptibility of xylan microparticles to enzymatic hydrolysis. Together, these results provide a useful platform for structural and functional studies of xylans to investigate cell wall biosynthesis and polymer-polymer interactions and suggest possible routes to new biobased materials with favorable properties for biomedical and renewable applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA