Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38385694

RESUMEN

RATIONALE: Sarcoidosis is a systemic granulomatous disorder associated with hypergammaglobulinemia and the presence of autoantibodies. The specific antigens initiating granulomatous inflammation in sarcoidosis are unknown and there is no specific test available to diagnose sarcoidosis. To discover novel sarcoidosis antigens, we developed a high-throughput T7 phage display library derived from the sarcoidosis cDNA and identified numerous clones differentiating sarcoidosis from other respiratory diseases. After clone sequencing and homology search, we identified two epitopes (Cofilinµ and Chain A) that specifically bind to serum IgGs of sarcoidosis patients. OBJECTIVES: To develop and validate an epitope-specific IgG-based immunoassay specific for sarcoidosis. METHODS: We chemically synthesized both immunoepitopes (Cofilinµ and Chain A), and generated rabbit polyclonal antibodies against both neoantigens. After extensive standardization, we developed a direct peptide ELISA and measured epitope-specific IgG in sera of 386 subjects including, healthy controls (n=100), three sarcoidosis cohorts (n=186), pulmonary tuberculosis (n=70) and lung cancer (n=30). MEASUREMENTS AND MAIN RESULTS: To develop a model to classify sarcoidosis from other groups, data were analyzed using five-fold cross-validation when adjusting for confounders. The Cofilinµ IgGs model yielded a mean sensitivity, specificity, and positive and negative predictive value (PPV, NPV) of 0.97, 0.9, 0.9 and 0.96, respectively. Those same measures for Chain A IgG antibody were 0.9, 0.83, 0.84 and 0.9 respectively. Combining both biomarkers improved AUC, sensitivity, specificity, PPV and NPV. CONCLUSIONS: These results provide a novel immunoassay for sarcoidosis. The discovery of two neoantigens facilitates the development of biospecific drug discovery and the sarcoidosis-specific model.

2.
Mediators Inflamm ; 2022: 6886752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873710

RESUMEN

Cerebral ischemia-reperfusion (I/R) incites neurologic damage through a myriad of complex pathophysiological mechanisms, most notably, inflammation and oxidative stress. In I/R injury, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) produces reactive oxygen species (ROS), which promote inflammatory and apoptotic pathways, augmenting ROS production and promoting cell death. Inhibiting ischemia-induced oxidative stress would be beneficial for reducing neuroinflammation and promoting neuronal cell survival. Studies have demonstrated that chlorpromazine and promethazine (C+P) induce neuroprotection. This study investigated how C+P minimizes oxidative stress triggered by ischemic injury. Adult male Sprague-Dawley rats were subject to middle cerebral artery occlusion (MCAO) and subsequent reperfusion. 8 mg/kg of C+P was injected into the rats when reperfusion was initiated. Neurologic damage was evaluated using infarct volumes, neurological deficit scoring, and TUNEL assays. NOX enzymatic activity, ROS production, protein expression of NOX subunits, manganese superoxide dismutase (MnSOD), and phosphorylation of PKC-δ were assessed. Neural SHSY5Y cells underwent oxygen-glucose deprivation (OGD) and subsequent reoxygenation and C+P treatment. We also evaluated ROS levels and NOX protein subunit expression, MnSOD, and p-PKC-δ/PKC-δ. Additionally, we measured PKC-δ membrane translocation and the level of interaction between NOX subunit (p47phox) and PKC-δ via coimmunoprecipitation. As hypothesized, treatment with C+P therapy decreased levels of neurologic damage. ROS production, NOX subunit expression, NOX activity, and p-PKC-δ/PKC-δ were all significantly decreased in subjects treated with C+P. C+P decreased membrane translocation of PKC-δ and lowered the level of interaction between p47phox and PKC-δ. This study suggests that C+P induces neuroprotective effects in ischemic stroke through inhibiting oxidative stress. Our findings also indicate that PKC-δ, NOX, and MnSOD are vital regulators of oxidative processes, suggesting that C+P may serve as an antioxidant.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Animales , Isquemia Encefálica/tratamiento farmacológico , Clorpromazina/farmacología , Clorpromazina/uso terapéutico , Masculino , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Prometazina/farmacología , Prometazina/uso terapéutico , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Superóxido Dismutasa/metabolismo
4.
J Neurosci Res ; 95(4): 1017-1024, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27571707

RESUMEN

The effectiveness of the rehabilitative benefits of physical exercise appears to be contingent upon when the exercise is initiated after stroke. The present study assessed the hypothesis that very early exercise increases the extent of apoptotic cell death via increased expression of proapoptotic proteins in a rat stroke model. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 hr using an intraluminal filament and assigned to four nonexercise and three exercise groups. Exercise on a Rota-Rod was initiated for 30 min at 6 hr (considered very early), at 24 hr (early), and at 3 days (relatively late) after reperfusion. At 24 hr after exercise, apoptotic cell death was determined. At 3 and 24 hr after exercise, the expression of pro- and antiapoptotic proteins was evaluated through Western blotting. As expected, ischemic stroke significantly increased the levels of apoptotic cell death. Compared with the stroke group without exercise, apoptotic cell death was further increased (P < 0.05) at 6 hr but not at 24 hr or 3 days with exercise. This exacerbated cell injury was associated with increased expression of proapoptotic proteins (BAX and caspase-3). The expression of Bcl-2, an antiapoptotic protein, was not affected by exercise. In ischemic stroke, apoptotic cell death was enhanced by very early exercise in association with increased expression of proapoptotic proteins. These results shed light on the time-sensitive effect of exercise in poststroke rehabilitation. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Apoptosis/fisiología , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/rehabilitación , Terapia por Ejercicio/métodos , Análisis de Varianza , Animales , Caspasa 3/metabolismo , Fragmentación del ADN , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Masculino , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Prueba de Desempeño de Rotación con Aceleración Constante , Factores de Tiempo , Proteína X Asociada a bcl-2/metabolismo
5.
J Neurosci Res ; 94(8): 749-58, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27027410

RESUMEN

Pyruvate dehydrogenase complex (PDH) is a brain mitochondrial matrix enzyme. PDH impairment after stroke is particularly devastating given PDH's critical role in the link between anaerobic and aerobic metabolism. This study evaluates the restoration of oxidative metabolism and energy regulation with a therapeutic combination of normobaric oxygen (NBO) plus either therapeutic hypothermia (TH) or ethanol. Sprague-Dawley rats were subjected to middle cerebral artery occlusion with an autologous embolus. One hour after occlusion, tissue-type plasminogen activator (t-PA) was administered alone or with NBO (60%), EtOH (1.0 g/kg), or TH (33°C), either singly or in combination. Neurological deficit score and infarct volume were assessed 24 hr after t-PA-induced reperfusion. PDH activity and reactive oxygen species (ROS) levels were measured 3 and 24 hr after t-PA. Western blotting was used to detect PDH and pyruvate dehydrogenase kinase (PDK) protein expression. After t-PA in ischemic rats, NBO combined with TH or EtOH most effectively decreased infarct volume and neurological deficit. The combined therapies produced greater increases in PDH activity and protein expression as well as greater decreases in PDK expression. Compared with the monotherapeutic approaches, the combined therapies provided the most significant declines in ROS generation. Reperfusion with t-PA followed by 60% NBO improves the efficacy of EtOH or TH in neuroprotection by ameliorating oxidative injury and improving PDH regulation. Comparable neuroprotective effects were found when treating with either EtOH or TH, suggesting a similar mechanism of neuroprotection and the possibility of substituting EtOH for TH in clinical settings. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Isquemia Encefálica/terapia , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Hipotermia Inducida/métodos , Neuroprotección , Terapia por Inhalación de Oxígeno/métodos , Complejo Piruvato Deshidrogenasa/metabolismo , Tromboembolia/terapia , Animales , Isquemia Encefálica/enzimología , Infarto Cerebral/tratamiento farmacológico , Infarto Cerebral/patología , Terapia Combinada , Masculino , Complejo Piruvato Deshidrogenasa/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Tromboembolia/enzimología , Terapia Trombolítica
6.
Stroke ; 46(2): 492-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25563647

RESUMEN

BACKGROUND AND PURPOSE: Ischemic stroke induces metabolic disarray. A central regulatory site, pyruvate dehydrogeanse complex (PDHC) sits at the cross-roads of 2 fundamental metabolic pathways: aerobic and anaerobic. In this study, we combined ethanol (EtOH) and normobaric oxygen (NBO) to develop a novel treatment to modulate PDHC and its regulatory proteins, namely pyruvate dehydrogenase phosphatase and pyruvate dehydrogenase kinase, leading to improved metabolism and reduced oxidative damage. METHODS: Sprague-Dawley rats were subjected to transient (2, 3, or 4 hours) middle cerebral artery occlusion followed by 3- or 24-hour reperfusion, or permanent (28 hours) middle cerebral artery occlusion without reperfusion. At 2 hours after the onset of ischemia, rats received either an intraperitoneal injection of saline, 1 dose of EtOH (1.5 g/kg) for 2- and 3-hour middle cerebral artery occlusion, 2 doses of EtOH (1.5 g/kg followed by 1.0 g/kg in 2 hours) in 4 hours or permanent middle cerebral artery occlusion, and EtOH+95% NBO (at 2 hours after the onset of ischemia for 6 hours) in permanent stroke. Infarct volumes and neurological deficits were examined. Oxidative metabolism and stress were determined by measuring ADP/ATP ratio and reactive oxygen species levels. Protein levels of PDHC, pyruvate dehydrogenase kinase, and pyruvate dehydrogenase phosphatase were assessed. RESULTS: EtOH induced dose-dependent neuroprotection in transient ischemia. Compared to EtOH or NBO alone, NBO+EtOH produced the best outcomes in permanent ischemia. These therapies improved brain oxidative metabolism by decreasing ADP/ATP ratios and reactive oxygen species levels, in association with significantly raised levels of PDHC and pyruvate dehydrogenase phosphatase, as well as decreased pyruvate dehydrogenase kinase. CONCLUSIONS: Both EtOH and EtOH+NBO treatments conferred neuroprotection in severe stroke by affecting brain metabolism. The treatment may modulate the damaging cascade of metabolic events by bringing the PDHC activity back to normal metabolic levels.


Asunto(s)
Etanol/uso terapéutico , Ataque Isquémico Transitorio/terapia , Terapia por Inhalación de Oxígeno/métodos , Complejo Piruvato Deshidrogenasa/fisiología , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/terapia , Animales , Ataque Isquémico Transitorio/enzimología , Masculino , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/enzimología
7.
iScience ; 27(1): 108746, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38299032

RESUMEN

Macrophage migration inhibitory factor (MIF) is a versatile cytokine that influences a variety of cellular processes important for immune regulation and tissue homeostasis. Sarcoidosis is a granulomatous disease characterized by extensive local inflammation and increased T helper cell mediated cytokines. We have shown that MIF has a modulatory role in cytokine networks in sarcoidosis. We investigated the effect of exogenous MIF on sarcoidosis alveolar macrophages (AMs), CD14+ monocytes and peripheral blood mononuclear cells (PBMCs). Our results showed that MIF negatively regulates the increased MAPKs (pp38 and pERK1/2) activation by inducing Mitogen-activated protein kinase phosphatase (MKP)-1. We found that MIF decreased IL-6 and IL-1ß production, increased the percentage of regulatory T-cells (Tregs), and induced IL-1R antagonist (IL-1RA) and IL-10 production. Thus, the results of our study suggest that exogenous MIF modulates MAPK activation by inducing MKP-1and Tregs as well as IL-10 and IL-1RA, and hence plays a modulatory role in immune activation in sarcoidosis.

8.
Stroke ; 44(5): 1418-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23512978

RESUMEN

BACKGROUND AND PURPOSE: Normobaric oxygenation (NBO) and ethanol both provide neuroprotection in stroke. We evaluated the enhanced neuroprotective effect of combining these 2 treatments in a rat stroke model. METHODS: Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2 hours. Reperfusion was then established and followed by treatment with either (1) an intraperitoneal injection of ethanol (1.0 g/kg), (2) NBO treatment (2-hour duration), or (3) NBO plus ethanol. The extent of brain injury was determined by infarct volume and motor performance. Oxidative metabolism was determined by ADP/ATP ratios, reactive oxygen species levels, nicotinamide adenine dinucleotide phosphate oxidase activity, and pyruvate dehydrogenase activity. Protein expression of major nicotinamide adenine dinucleotide phosphate oxidase subunits (p47(phox), gp91(phox), and p67(phox)) and the enzyme pyruvate dehydrogenase was evaluated through Western immunoblotting. RESULTS: NBO and ethanol monotherapies each demonstrated reductions as compared to stroke without treatment in infarct volume (36.7% and 37.9% vs 48.4%) and neurological deficits (score of 6.4 and 6.5 vs 8.4); however, the greatest neuroprotection (18.8% of infarct volume and 4.4 neurological deficit) was found in animals treated with combination therapy. This neuroprotection was associated with the largest reductions in ADP/ATP ratios, reactive oxygen species levels, and nicotinamide adenine dinucleotide phosphate oxidase activity, and the largest increase in pyruvate dehydrogenase activity. CONCLUSIONS: Combination therapy with NBO and ethanol enhances the neuroprotective effect produced by each therapy alone. The mechanism behind this synergistic action is related to changes in cellular metabolism after ischemia reperfusion. NBO plus ethanol is attractive for clinical study because of its ease of use, tolerability, and tremendous neuroprotective potential in stroke.


Asunto(s)
Isquemia Encefálica/terapia , Encéfalo/metabolismo , Etanol/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Terapia por Inhalación de Oxígeno/métodos , Accidente Cerebrovascular/terapia , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Terapia Combinada , Modelos Animales de Enfermedad , Etanol/farmacología , Fármacos Neuroprotectores/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Resultado del Tratamiento
9.
J Neurochem ; 126(1): 113-21, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23350720

RESUMEN

Ethanol provides neuroprotection following ischemia/reperfusion. This study assessed ethanol's effect on hyperglycolysis and NADPH oxidase (NOX) activation. Adult, male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Three sets of experiments were conducted to determine ethanol's effect on (i) conferring neuroprotection by measuring infarct volume and neurological deficits 24 h post reperfusion; (ii) cerebral glucose metabolism and lactic acidosis by measuring brain and blood glucose concentrations and protein expression of glucose transporter 1 and 3 (GLUT1, GLUT3), phosphofructokinase (PFK), as well as lactic acidosis by measuring lactate dehydrogenase (LDH), and lactate; and (iii) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activation by detecting enzymatic activity and subunit expression at 3 h after reperfusion. When administered upon reperfusion, ethanol (1.5 g/kg) reduced infarct volume by 40% (p < 0.01) and neurological deficits by 48% at 24 h post reperfusion while reducing (p < 0.01) elevations in glycolytic protein expression and lactate levels during early reperfusion (3 h). Ethanol increased the reductions in cerebral glucose concentration at 3 h post reperfusion by 64% (p < 0.01) while enhancing (p < 0.01) post stroke blood glucose concentration, suggesting a reduced cellular glucose uptake and utilization. Ethanol decreased (p < 0.01) stroke-induced NOX activation by reducing enzymatic activity and gp91(phox) expression by 45% and 38%, respectively. Post-ischemia ethanol treatment exerts neuroprotection through attenuation of hyperglycolysis and associated NOX activation. Because of the lack of associated hypoglycemia and selectivity toward decreasing cerebral metabolism, further investigation of ethanol's use as a post-stroke therapy, especially in the context of hyperglycemia, seems warranted.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Depresores del Sistema Nervioso Central/uso terapéutico , Etanol/uso terapéutico , Glucólisis/efectos de los fármacos , NADPH Oxidasas/metabolismo , Fármacos Neuroprotectores , Accidente Cerebrovascular/tratamiento farmacológico , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Glucemia/metabolismo , Química Encefálica/fisiología , Isquemia Encefálica/patología , Isquemia Encefálica/psicología , Infarto Cerebral/tratamiento farmacológico , Infarto Cerebral/patología , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 3/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Masculino , Fosfofructoquinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/psicología
10.
J Neurosci Res ; 91(6): 818-27, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23553672

RESUMEN

Physical exercise preconditioning is known to ameliorate stroke-induced injury. In addition to several other mechanisms, the beneficial effect of preischemic exercise following stroke is due to an upregulated capacity to maintain energy supplies. Adult male Sprague-Dawley rats were used in exercise and control groups. After 1-3 weeks of exercise, several enzymes were analyzed as a gauge of the direct effect of physical exercise on cerebral metabolism. As a measure of metabolic capacity, an ADP/ATP ratio was obtained. Glucose transporters (GLUT1 and GLUT3) were monitored to assess glucose influx, and phosphofructokinase (PFK) was measured to determine the rate of glycolysis. Hypoxia-induced factor-1α (HIF-1α) and 5'AMP-activated protein kinase (AMPK) levels were also determined. These same analyses were performed on preconditioned and control rats following an ischemic/reperfusion (I/R) insult. Our results show that GLUT1, GLUT3, PFK, AMPK, and HIF-1α were all increased following 3 weeks of exercise training. In addition, the ADP/ATP ratio was chronically elevated during these 3 weeks. After I/R injury, HIF-1α and AMPK were significantly higher in exercised rats. The ADP/ATP ratio was reduced in preconditioned rats in the acute phase after stroke, suggesting a lower level of metabolic disorder. GLUT1 and GLUT3 were also increased in the acute phase in exercise rats, indicating that these rats were better able to increase rates of metabolism immediately after ischemic injury. In addition, PFK expression was increased in exercise rats showing an enhanced glycolysis resulting from exercise preconditioning. Altogether, exercise preconditioning increased the rates of glucose metabolism, allowing a more rapid and more substantial increase in ATP production following stroke.


Asunto(s)
Encéfalo/metabolismo , Condicionamiento Físico Animal/fisiología , Daño por Reperfusión/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Daño por Reperfusión/prevención & control
11.
Microbiol Spectr ; 11(1): e0337722, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36651770

RESUMEN

Despite advances in rapid molecular techniques for tuberculosis (TB) diagnostics, there is an unmet need for a point-of-care, nonsputum-based test. Previously, through a T7 phage antigen display platform and immunoscreening, we identified that the serum IgGs of active TB patients differentially bind to several antigen-clones and that this immunoreactivity discriminates TB from other respiratory diseases. One of these high-performance clones has some homology to the transketolase of Mycobacterium tuberculosis (M.tb TKT). In this study, we developed a direct enzyme-linked immunosorbent assay (ELISA) detecting IgG against the TKT antigen-clone (TKTµ). Through sequence alignment and in silico analysis, we designed two more peptides with potential antigenicity that correspond to M.tb-specific transketolase (M.tb TKT1 and M.tb TKT3) epitopes. After the development and standardization of a direct peptide ELISA for three peptides, we tested 292 subjects, including TB (n = 101), latent tuberculosis infection (LTBI) (n = 49), healthy controls (n = 66), and sarcoidosis (n = 76). We randomly assigned 60% of the subjects to a training set to create optimal models to distinguish positive TB samples, and the remaining 40% were used to validate the diagnostic power of the IgG-based assays that were developed in the training set. Antibodies against M.tb TKT3 yielded the highest sensitivity (0.845), and these were followed by TKTµ (0.817) and M.tb TKT1 (0.732). The specificities obtained by TKTµ, M.tb TKT3, and M.tb TKT1 on the test sets were 1, 0.95, and 0.875, respectively. The model using TKTµ obtained a perfect positive predictive value (PPV) of 1, and this was followed by M.tb TKT3 (0.968) and M.tb TKT1 (0.912). These results show that IgG antibodies against transketolase can discriminate active TB against LTBI, sarcoidosis, and controls. IMPORTANCE There is an unmet need for a point-of-care, nonsputum-based TB test. Through the immunoscreening of a novel T7 phage library, we identified classifiers that specifically bind to IgGs in active TB sera. We discovered that one of these clones is aligned with Mycobacterium tuberculosis transketolase (TKT). TKT is an essential enzyme for Mycobacterium tuberculosis growth. We designed three TKT epitopes (TKTµ, TKT1, and TKT3) to detect TKT-specific IgGs. After the development and standardization of three different ELISA-utilizing TKT peptides, we tested 292 subjects, including active TB, LTBI, healthy controls, and sarcoidosis. Rigorous statistical analyses using training and validation sets showed that ELISA-based detections of specific IgGs against TKT3 and TKTµ have the greatest sensitivity, specificity, and accuracy to distinguish active TB subjects from others, even LTBI. Our work provides a novel scientific platform from which to further develop a point-of-care test, thereby aiding in faster TB diagnoses.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Sarcoidosis , Tuberculosis , Humanos , Transcetolasa , Epítopos , Tuberculosis Latente/diagnóstico , Antígenos Bacterianos , Inmunoglobulina G
12.
Stroke ; 43(1): 205-10, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22052512

RESUMEN

BACKGROUND AND PURPOSE: Ethanol consumption is inversely associated with the risk of ischemic stroke, suggesting a neuroprotective effect. In a rat model of transient cerebral ischemia, we identified ethanol as a possible treatment for acute ischemic stroke. METHODS: Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2 hours. Five sets of experiments were conducted: to determine the dose-response effect of ethanol on brain infarction and functional outcome; to determine whether combining ethanol and hypothermia produces synergistic neuroprotection; to determine the therapeutic windows of opportunity for ethanol in stroke; to test whether ethanol promotes intracerebral hemorrhage in a hemorrhagic or ischemic stroke or after administration of thrombolytics; and to test the affect of ethanol on hypoxia-inducible factor-1α protein expression. RESULTS: Ethanol at 1.5 g/kg reduced infarct volume and behavioral dysfunction when administered at 2, 3, or 4 hours after middle cerebral artery occlusion. The protective effect of ethanol was not improved when paired with hypothermia. Ethanol did not promote cerebral hemorrhage in hemorrhagic or ischemic stroke in combination with recombinant tissue-type plasminogen activator or urokinase. Ethanol treatment (1.5 g/kg) increased protein levels of hypoxia-inducible factor-1α at 3 hours postreperfusion. CONCLUSIONS: Ethanol exerts a strong neuroprotective effect when administered up to 4 hours after ischemia, increases expression of hypoxia-inducible factor-1α, and does not promote intracerebral hemorrhage when used with thrombolytics. Ethanol is a potential neuroprotectant for acute ischemic stroke.


Asunto(s)
Encéfalo/efectos de los fármacos , Etanol/uso terapéutico , Ataque Isquémico Transitorio/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Hemorragia Cerebral/inducido químicamente , Hemorragia Cerebral/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Etanol/administración & dosificación , Fibrinolíticos/administración & dosificación , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ataque Isquémico Transitorio/metabolismo , Ataque Isquémico Transitorio/fisiopatología , Masculino , Fármacos Neuroprotectores/administración & dosificación , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Activador de Tejido Plasminógeno/administración & dosificación , Activador de Plasminógeno de Tipo Uroquinasa/administración & dosificación
13.
Biomolecules ; 12(6)2022 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-35740974

RESUMEN

Stroke is a leading threat to human life. Metabolic dysfunction of glucose may play a key role in stroke pathophysiology. Pharmacological hypothermia (PH) is a potential neuroprotective strategy for stroke, in which the temperature is decreased safely. The present study determined whether neuroprotective PH with chlorpromazine and promethazine (C + P), plus dihydrocapsaicin (DHC) improved glucose metabolism in acute ischemic stroke. A total of 208 adult male Sprague Dawley rats were randomly divided into the following groups: sham, stroke, and stroke with various treatments including C + P, DHC, C + P + DHC, phloretin (glucose transporter (GLUT)-1 inhibitor), cytochalasin B (GLUT-3 inhibitor), TZD (thiazolidinedione, phosphoenolpyruvate carboxykinase (PCK) inhibitor), and apocynin (nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor). Stroke was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 6 or 24 h of reperfusion. Rectal temperature was monitored before, during, and after PH. Infarct volume and neurological deficits were measured to assess the neuroprotective effects. Reactive oxygen species (ROS), NOX activity, lactate, apoptotic cell death, glucose, and ATP levels were measured. Protein expression of GLUT-1, GLUT-3, phosphofructokinase (PFK), lactate dehydrogenase (LDH), PCK1, PCK2, and NOX subunit gp91 was measured with Western blotting. PH with a combination of C + P and DHC induced faster, longer, and deeper hypothermia, as compared to each alone. PH significantly improved every measured outcome as compared to stroke and monotherapy. PH reduced brain infarction, neurological deficits, protein levels of glycolytic enzymes (GLUT-1, GLUT-3, PFK and LDH), gluconeogenic enzymes (PCK1 and PCK2), NOX activity and its subunit gp91, ROS, apoptotic cell death, glucose, and lactate, while raising ATP levels. In conclusion, stroke impaired glucose metabolism by enhancing hyperglycolysis and gluconeogenesis, which led to ischemic injury, all of which were reversed by PH induced by a combination of C + P and DHC.


Asunto(s)
Hipotermia , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Adenosina Trifosfato/metabolismo , Animales , Clorpromazina , Gluconeogénesis , Glucosa , Hipotermia/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Lactatos , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Accidente Cerebrovascular/metabolismo
14.
Mol Neurobiol ; 58(5): 2309-2321, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33417227

RESUMEN

To demonstrate the role of the rate-limiting and ATP-dependent gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK) in oxidative and lactic stress and the effect of phenothiazine on PCK after stroke, a total of 168 adult male Sprague Dawley rats (3 months old, 280-300 g) underwent 2-h intraluminal middle cerebral artery occlusion (MCAO) and reperfusion for 6, 24, 48 h, or 7 days. Phenothiazine (chlorpromazine and promethazine (C+P)) (8 mg/kg) and 3-mercaptopicolinic acid (3-MPA, a PCK inhibitor, 100 µM) were administered at reperfusion onset. The effects of phosphoenolpyruvate, 3-MPA, or PCK knockdown were studied in neuronal cultures subjected to oxygen/glucose deprivation. Reactive oxygen species, lactate, phosphoenolpyruvate (PEP; a gluconeogenic product), mRNA, and protein of total PCK, PCK-1, and PCK-2 increased after MCAO and oxygen-glucose deprivation (OGD). Oxaloacetate (a gluconeogenic substrate) decreased, while PEP and glucose were increased, suggesting reactive gluconeogenesis. These changes were attenuated by phenothiazine, 3-MPA, or PCK shRNA. PCK-1 and -2 existed primarily in neurons, while the effects of ischemic stroke on the PCK expression were seen predominately in astrocytes. Thus, phenothiazine reduced infarction and oxidative/lactic stress by inhibiting PCKs, leading to functional recovery.


Asunto(s)
Encéfalo/metabolismo , Gluconeogénesis/fisiología , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Masculino , Fenotiazinas/farmacología , Ácidos Picolínicos/farmacología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
15.
Brain Res ; 1763: 147463, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811844

RESUMEN

BACKGROUND: After ischemic stroke, the increased catabolism of glucose (hyperglycolysis) results in the production of reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). A depressive or hibernation-like effect of C + P on brain activity was reported to induce neuroprotection. The current study assesses the effect of C + P on hyperglycolysis and NOX activation. METHODS: Adult male Sprague-Dawley rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by 6 or 24 h of reperfusion. At the onset of reperfusion, rats received C + P with or without temperature control, or phloretin [glucose transporter (GLUT)-1 inhibitor], or cytochalasin B (GLUT-3 inhibitor). We detected brain ROS, apoptotic cell death, and ATP levels along with HIF-1α expression. Cerebral hyperglycolysis was measured by glucose, protein expression of GLUT-1/3, and phosphofructokinase-1 (PFK-1), as well as lactate and lactate dehydrogenase (LDH) at 6 and 24 h of reperfusion. The enzymatic activity of NOX and protein expression of its subunits (gp91phox) were detected. Neural SHSY5Y cells were placed under 2 h of oxygen-glucose deprivation (OGD) followed by reoxygenation for 6 and 24 h with C + P treatment. Cell viability and protein levels of HIF-1α, GLUT-1/3, PFK-1, LDH, and gp91phox were measured. A HIF-1α overexpression vector was transfected into the cells, and then protein levels of HIF-1α, GLUT-1/3, PFK-1, and LDH were quantitated. In sham-operated rats and control cells, the protein levels of HIF-1α, GLUT-1/3, PFK-1, LDH, and gp91phox were measured at 6 and 24 h after C + P administration. RESULTS: C + P reduced the protein elevations after stroke in HIF-1α, glycolytic enzymes, as well as in ROS, cell death, glucose and lactate, but raised ATP levels in the brain. In ischemic rats exposed to GLUT-1/3 inhibitors, ROS, cell death, glucose, and lactate were all decreased, as well as GLUT-1, GLUT-3, LDH, and PFK-1 protein levels. C + P decreased ischemia-induced NOX activation by reducing the enzymatic activity and protein expression of the NOX subunit gp91phox, as was observed in the presence of GLUT-1/3 inhibitors. These markers were significantly decreased following C + P administration with the induced hypothermia, while C + P administration with temperature control at 37 °C induced lesser protection after ischemia stroke. In the OGD/reoxygenation model, C + P treatment increased cell viability and diminished protein levels of HIF-1α, GLUT-1, GLUT-3, PFK-1, LDH, and gp91phox. However, in OGD with HIF-1α overexpression, C + P was unable to effectively reduce the upregulated GLUT-1, GLUT-3, and LDH. In normal conditions, C + P reduced HIF-1α and the levels of key glycolytic enzymes depending on its pharmacological effect. CONCLUSION: C + P, partially depending on hypothermia, attenuates hyperglycolysis and NOX activation through HIF-1α regulation.


Asunto(s)
Clorpromazina/uso terapéutico , Glucólisis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Prometazina/uso terapéutico , Animales , Clorpromazina/farmacología , Glucosa/deficiencia , Transportador de Glucosa de Tipo 1/efectos de los fármacos , Transportador de Glucosa de Tipo 3/efectos de los fármacos , Hipoxia , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , L-Lactato Deshidrogenasa/efectos de los fármacos , Masculino , NADPH Oxidasa 2/efectos de los fármacos , Fosfofructoquinasa-1/efectos de los fármacos , Prometazina/farmacología , Ratas , Ratas Sprague-Dawley
16.
Neural Regen Res ; 16(6): 1017-1023, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33269745

RESUMEN

Normobaric oxygen therapy has gained attention as a simple and convenient means of achieving neuroprotection against the pathogenic cascade initiated by acute ischemic stroke. The mechanisms underlying the neuroprotective efficacy of normobaric oxygen therapy, however, have not been fully elucidated. It is hypothesized that cerebral hyperglycolysis is involved in the neuroprotection of normobaric oxygen therapy against ischemic stroke. In this study, Sprague-Dawley rats were subjected to either 2-hour middle cerebral artery occlusion followed by 3- or 24-hour reperfusion or to a permanent middle cerebral artery occlusion event. At 2 hours after the onset of ischemia, all rats received either 95% oxygen normobaric oxygen therapy for 3 hours or room air. Compared with room air, normobaric oxygen therapy significantly reduced the infarct volume, neurological deficits, and reactive oxygen species and increased the production of adenosine triphosphate in ischemic rats. These changes were associated with reduced transcriptional and translational levels of the hyperglycolytic enzymes glucose transporter 1 and 3, phosphofructokinase 1, and lactate dehydrogenase. In addition, normobaric oxygen therapy significantly reduced adenosine monophosphate-activated protein kinase mRNA expression and phosphorylated adenosine monophosphate-activated protein kinase protein expression. These findings suggest that normobaric oxygen therapy can reduce hyperglycolysis through modulating the adenosine monophosphate-activated protein kinase signaling pathway and alleviating oxidative injury, thereby exhibiting neuroprotective effects in ischemic stroke. This study was approved by the Institutional Animal Investigation Committee of Capital Medical University (approval No. AEEI-2018-033) on August 13, 2018.

17.
Neurol Res ; 41(8): 742-748, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31099309

RESUMEN

Introduction: Fine particle pollution, including diesel exhaust particles (DEP), is a well-recognized and significant threat to public health. Cerebrovascular disease has been shown to be among the pathologies produced by fine particle exposure, and is thought to arise in this context through oxidative and inflammatory mechanisms. The manner by which these mechanisms interface with normal cerebral metabolism in their promotion of cerebrovascular pathogenesis, however, remains to be elucidated. Recent evidence has emerged that implicates a new pathway in post-stroke oxidative injury: gluconeogenesis. Therefore, we investigated whether diesel exhaust particle (DEP)-mediated oxidative injury to brain cells was associated with upregulation of the gluconeogenic pathway. Methods: Human neuroblastoma SH-SY5Y cells were maintained in complete Dulbecco's Modified Eagle's Medium (DMEM)/F12 at 37°C. Cells were exposed to freshly dispersed DEP preparations at 0, 6.25, 12.5, 25, 50, 100, or 200 µg/ml for either 3 or 24 h. Cell survival was then gauged by MTT assay, intracellular oxidative stress was quantified by fluorescence, and expression of gluconeogenic enzymes was assayed by quantitative RT-PCR. Results: Exposure to increasing concentrations of DEP yielded proportional, significant decreases in cell viability in conjunction with proportional, significant increases in intracellular ROS generation. These findings occurred in the context of DEP-induced reactive gluconeogenesis, as demonstrated by significant transcriptional upregulation of the key regulatory gluconeogenic enzymes PEPCK, PC, G6PC, and FBP. Conclusion: Gluconeogenesis was induced in human neural cells exposed to fine particles (DEP), in association with cell damage and oxidative stress. These findings suggest that the pathogenesis of cerebrovascular injury due to fine particle pollutant exposure may proceed through derangements in gluconeogenic metabolism. Abbreviations: DEP: diesel exhaust particles, ICA: intracranial atherosclerosis, ROS: reactive oxygen species.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Contaminación del Aire , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glucosa/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo
18.
Curr Neurovasc Res ; 16(3): 232-240, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31232236

RESUMEN

BACKGROUND: The inflammatory response to acute cerebral ischemia is a major factor in stroke pathobiology and patient outcome. In the clinical setting, no effective pharmacologic treatments are currently available. Phenothiazine drugs, such as chlorpromazine and promethazine, (C+P) have been widely studied because of their ability to induce neuroprotection through artificial hibernation after stroke. The present study determined their effect on the inflammatory response. METHODS: Sprague-Dawley rats were divided into 4 groups: (1) sham, (2) stroke, (3) stroke treated by C+P without temperature control and (4) stroke treated by C+P with temperature control (n=8 per group). To assess the neuroprotective effect of C+P, brain damage was measured using infarct volume and neurological deficits. The expression of inflammatory response molecules tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) was determined by real-time PCR and Western blotting. RESULTS: TNF-α, IL-1ß, ICAM-1, VCAM-1, and NF-κB mRNA and protein expressions were upregulated, and brain damage and neurological deficits were increased after stroke. These markers of cerebral injury were significantly reduced following C+P administration under drug-induced hypothermia, while C+P administration under normal body temperature reduced them by a lesser degree. CONCLUSION: This study showed an inhibitory effect of C+P on brain inflammation, which may be partially dependent on drug-induced hibernation, as well as other mechanisms of action by these drugs. These findings further suggest the great potential of C+P in the clinical treatment of ischemic stroke.


Asunto(s)
Antipsicóticos/uso terapéutico , Encéfalo/fisiopatología , Hibernación/fisiología , Neuroprotección/fisiología , Fenotiazinas/uso terapéutico , Accidente Cerebrovascular/prevención & control , Animales , Antipsicóticos/farmacología , Encéfalo/efectos de los fármacos , Hibernación/efectos de los fármacos , Inflamación/fisiopatología , Inflamación/prevención & control , Masculino , Neuroprotección/efectos de los fármacos , Fenotiazinas/farmacología , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/fisiopatología
19.
Brain Sci ; 9(12)2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31847503

RESUMEN

Phenothiazine treatment has been shown to reduce post-stroke ischemic injury, though the underlying mechanism remains unclear. This study sought to confirm the neuroprotective effects of phenothiazines and to explore the role of the NOX (nicotinamide adenine dinucleotide phosphate oxidase)/Akt/PKC (protein kinase C) pathway in cerebral apoptosis. Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO) for 2 h and were randomly divided into 3 different cohorts: (1) saline, (2) 8 mg/kg chlorpromazine and promethazine (C+P), and (3) 8 mg/kg C+P as well as apocynin (NOX inhibitor). Brain infarct volumes were examined, and cell death/NOX activity was determined by assays. Western blotting was used to assess protein expression of kinase C-δ (PKC-δ), phosphorylated Akt (p-Akt), Bax, Bcl-XL, and uncleaved/cleaved caspase-3. Both C+P and C+P/NOX inhibitor administration yielded a significant reduction in infarct volumes and cell death, while the C+P/NOX inhibitor did not confer further reduction. In both treatment groups, anti-apoptotic Bcl-XL protein expression generally increased, while pro-apoptotic Bax and caspase-3 proteins generally decreased. PKC protein expression was decreased in both treatment groups, demonstrating a further decrease by C+P/NOX inhibitor at 6 and 24 h of reperfusion. The present study confirms C+P-mediated neuroprotection and suggests that the NOX/Akt/PKC pathway is a potential target for efficacious therapy following ischemic stroke.

20.
Brain Res ; 1724: 146406, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31454517

RESUMEN

OBJECTIVE: The present study aimed to determine if hypothermia augments the neuroprotection conferred by MSC administration by providing a conducive micro-environment. METHODS: Sprague-Dawley rats were subjected to 1.5 h middle cerebral artery occlusion (MCAO) followed by 6 or 24 h of reperfusion for molecular analyses, as well as 1, 14 and 28 days for brain infarction or functional outcomes. Rats were treated with either MSC (1 × 105), LCI (cold saline, 0.6 ml/min, 5 min) or both. Brain damage was determined by Infarct volume and neurological deficits. Long-term functional outcomes were evaluated using foot-fault and Rota-rod testing. Human neural SHSY5Y cells were investigated in vitro using 2 h oxygen-glucose deprivation (OGD) followed by MSC with or without hypothermia (HT) (34 °C, 4 h). Mitochondrial transfer was assessed by confocal microscope, and cell damage was determined by cell viability, ATP, and ROS level. Protein levels of IL-1ß, BAX, Bcl-2, VEGF and Miro1 were measured by Western blot following 6 h and 24 h of reperfusion and reoxygenation. RESULTS: MSC, LCI, and LCI + MSC significantly reduced infarct volume and deficit scores. Combination therapy of LCI + MSC precipitated better long-term functional outcomes than monotherapy. Upregulation of Miro1 in the combination group increased mitochondrial transfer and lead to a greater increase in neuronal cell viability and ATP, as well as a decrease in ROS. Further, combination therapy significantly decreased expression of IL-1ß and BAX while increasing Bcl-2 and VEGF expression. CONCLUSION: Therapeutic hypothermia upregulated Miro1 and enhanced MSC mitochondrial transfer-mediated neuroprotection in ischemic stroke. Combination of LCI with MSC therapy may facilitate clinical translation of this approach.


Asunto(s)
Isquemia Encefálica/metabolismo , Hipotermia Inducida/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Lesiones Encefálicas/metabolismo , Isquemia Encefálica/terapia , Modelos Animales de Enfermedad , Hipotermia/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia/metabolismo , Isquemia/terapia , Masculino , Células Madre Mesenquimatosas/metabolismo , Neuronas/metabolismo , Neuroprotección/fisiología , Ratas , Ratas Sprague-Dawley , Reperfusión , Daño por Reperfusión/metabolismo , Accidente Cerebrovascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA