RESUMEN
A base promoted oxidative [4+2] annulation of pyrrole-2-carbaldehyde derivatives with o-hydroxyphenyl propargylamines for the synthesis of highly substituted indolizines has been developed. Using DBN as base, a broad range of 5,6,7-trisubstituted indolizines have been prepared in good to excellent yields under mild conditions, and many useful functional groups can be tolerated.
RESUMEN
2,3-Allenamides are an important class of unsaturated group-substituted carbonyl compounds. A palladium-catalyzed aminocarbonylation of propargyl acetates with amines for the synthesized tri-/tetrasubstituted 2,3-allenamides has been developed. A broad range of tri-/tetrasubstituted 2,3-allenamides have been prepared from propargyl acetates in good to excellent yields. The reaction featured mild reaction conditions and good functional group tolerance. The applicability of this methodology was further highlighted by the late-stage modification of several natural products and pharmaceuticals.
RESUMEN
A Cu/Pd-cocatalyzed 1,5-boroacylation of cyclopropyl-substituted ACPs with B2pin2 and acid chlorides has been developed. Using cyclopropyl-substituted ACPs as the starting material, a broad range of 1,5-boroacylated products with multiple functional groups was prepared in good yields with excellent regio- and stereoselectively. Both aromatic and aliphatic acid chlorides were tolerated in this reaction.
RESUMEN
A palladium-catalyzed intramolecular Heck/aminocarbonylation of alkene-tethered iodobenzenes with nitro compounds has been developed for the synthesis of carbamoyl-substituted benzoheterocycles. Using Mo(CO)6 as a solid CO source, no external reductant or additives were needed in this procedure. Both nitroarenes and nitroalkanes were well tolerated. A range of carbamoyl-substituted dihydrobenzofurans and indolines were prepared in moderate to high yields.
RESUMEN
A palladium catalyzed annulation of o-iodo-anilines with propargyl alcohols for the synthesis of substituted quinolines has been developed. The reaction tolerates diverse functional groups under mild conditions, providing direct access to 2,4-disubstituted quinolines from easily available starting materials. A broad range of 2,4-disubstituted quinolines were efficiently prepared in good to excellent yields.
RESUMEN
To find potential α-glucosidase inhibitors, indolo[1,2-b]isoquinoline derivatives (1-20) were screened for their α-glucosidase inhibitory effects. All derivatives presented potential α-glucosidase inhibitory effects with IC50 values of 3.44 ± 0.36~41.24 ± 0.26 µM compared to the positive control acarbose (IC50 value: 640.57 ± 5.13 µM). In particular, compound 11 displayed the strongest anti-α-glucosidase activity, being ~186 times stronger than acarbose. Kinetic studies found that compounds 9, 11, 13, 18, and 19 were all reversible mix-type inhibitors. The 3D fluorescence spectra and CD spectra results revealed that the interaction between compounds 9, 11, 13, 18, and 19 and α-glucosidase changed the conformational changes of α-glucosidase. Molecular docking and molecular dynamics simulation results indicated the interaction between compounds and α-glucosidase. In addition, cell cytotoxicity and drug-like properties of compound 11 were also investigated.
Asunto(s)
Acarbosa , alfa-Glucosidasas , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Cinética , Inhibidores de Glicósido Hidrolasas/farmacología , IsoquinolinasRESUMEN
Tyrosinase plays crucial roles in mediating the production of melanin pigment; thus, its inhibitors could be useful in preventing melanin-related diseases. To find potential tyrosinase inhibitors, a series of cinnamic acid-eugenol esters (c1~c29) was synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR, HRMS, and FT-IR, respectively. The biological evaluation results showed that all compounds c1~c29 exhibited definite tyrosinase inhibitory activity; especially, compound c27 was the strongest tyrosinase inhibitor (IC50: 3.07 ± 0.26 µM), being ~4.6-fold stronger than the positive control, kojic acid (IC50: 14.15 ± 0.46 µM). Inhibition kinetic studies validated compound c27 as a reversible mixed-type inhibitor against tyrosinase. Three-dimensional fluorescence and circular dichroism (CD) spectra results indicated that compound c27 could change the conformation and secondary structure of tyrosinase. Fluorescence-quenching results showed that compound c27 quenched tyrosinase fluorescence in the static manner with one binding site. Molecular docking results also revealed the binding interactions between compound c27 and tyrosinase. Therefore, cinnamic acid-eugenol esters, especially c27, could be used as lead compounds to find potential tyrosinase inhibitors.
Asunto(s)
Eugenol , Melaninas , Eugenol/farmacología , Cinética , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Monofenol Monooxigenasa , Ésteres/farmacologíaRESUMEN
A potassium carbonate promoted tandem oxy-Michael addition/cyclization of α,ß-unsaturated carbonyl compounds with naphthol derivatives for the synthesis of 2-substituted naphthopyrans was developed. Using the readily available, inexpensive potassium carbonate as the promoter, a range of different substituted naphthopyrans were prepared.
RESUMEN
A base-promoted [4 + 2] annulation of pyrrole-2-carbaldehyde derivatives with ß,γ-unsaturated α-ketoesters for the syntheses of multisubstituted 5,6-dihydroindolizines was developed. Using DBN as a base, the reaction proceeds smoothly under mild conditions to provide the target products in moderate to high yields, and many useful functional groups can be tolerated.
Asunto(s)
Ésteres , Pirroles , Catálisis , CiclizaciónRESUMEN
Substituents modification of BN-heterocycles on the boron atom has proven important to the photoreactivity and optoelectronic properties of BN-heterocycles. We developed a sequential and diverse synthetic strategy toward BN-heterocycles, in which the boron building block can be introduced with fully pre-functionalized substituents (Route A) or the substituents can be partially (Route B) or fully (Route C) modified after borylation. These three routes are complementary to provide more diverse BN-heterocycles, which will find broad applications in manipulating/controlling molecular transformations and the development of new photoresponsive materials.
RESUMEN
Herein, we describe a highly effective 1,8-conjugate-addition-mediated formal (3+3)-annulation of (aza)-para-quinone methides in situ generated from propargylic alcohols with 4-hydroxycoumarins and 1,3-dicarbonyl compounds under the catalysis of a Brønsted acid. This methodology affords efficient and practical access to synthetically important and highly functionalized pyranocoumarins and pyrans in excellent yields under mild conditions. Importantly, these products exhibit impressive inhibitory activity toward α-glucosidase.
Asunto(s)
4-Hidroxicumarinas , Catálisis , Indolquinonas , Estructura Molecular , EstereoisomerismoRESUMEN
A novel Brønsted acid catalyzed 1,8-addition mediated (3 + 4)-annulation of in situ generated propargylic p-quinone methides with 2-indolylmethanols is described. This method provides a convenient and mild approach to structurally interesting and synthetically important polysubstituted indole-fused oxepines in high yields. Moreover, 2-indolylmethanols as four-atom synthons in the (3 + 4)-annulations under Brønsted acid conditions have been explored for the first time.
Asunto(s)
Indolquinonas , IndolesRESUMEN
Dearomatization of indole is a useful strategy to access indolimines: a motif widely exists in biologically active molecules and natural products. Herein, an efficient method for the dearomatization of 2,3-disubstituted indoles to generate diverse indolimines with tetrasubstituted allenes is described. This work accomplishes dearomatization of 2,3-disubstituted indoles through 1,8-addition of (aza)-para-quinone methides, which are generated in situ from propargylic alcohols. A series of synthetically useful indolimines containing quaternary carbon centers and tetrasubstituted allenes can be accessed in good yields (up to 99%). Additionally, the separability of product isomers, diversified product transformations, and easy scale-up of the reaction demonstrate the potential application of this method.
Asunto(s)
Indolquinonas , IndolesRESUMEN
The main contributions in the field of first-row transition-metal-catalyzed (base-metal-catalyzed) carbonylative transformations have been summarized and discussed. The contents have been divided according to the electrophiles applied, followed by the different types of nucleophiles. Their reaction mechanisms and applications have been emphatically discussed.
RESUMEN
Herein, we report an efficient Brønsted acid-catalyzed formal (3+3)-annulation of (aza)-para-quinone methides generated in situ from propargylic alcohols with naphthol derivatives, which involves a 1,8-conjugate addition/6-endo annulation process. This protocol provides an effective method for preparing important functionalized pyranocoumarins under mild conditions.
RESUMEN
A palladium-catalyzed four-component carbonylative coupling reaction involving aryl halides, internal alkynes, arylboronic acids, and CO has been developed for the first time. All-carbon substituted α-unsaturated ketones and benzofulvenes can be selectively obtained in a highly regio- and stereocontrolled manner. Using Cu(TFA)2 as the additive, a series of tetrasubstituted α-unsaturated ketones were prepared in moderate to high yields. Using more acidic Lewis acid Cu(OTf)2 as the additive, multisubstituted benzofluvenes were synthesized in moderate yields. This efficient methodology involved the formation of three new C-C bonds, and provided a divergent method for the quick construction of multisubstituted α-unsaturated ketones and benzofulvenes from easily available starting materials.
RESUMEN
A convenient palladium-catalyzed carbonylation reaction for the efficient synthesis of (E)-3-benzylidenechroman-4-ones has been developed. Using TFBen as a solid CO source, a range of substituted (E)-3-benzylidenechroman-4-ones were prepared in moderate to good yields with 2-iodophenols and allyl chlorides as the substrates. Additionally, substituted quinolin-4(1H)-ones can also be obtained with 2-iodoaniline as the starting material.
RESUMEN
A palladium-catalyzed C-H carbonylation of benzylamines for the synthesis of isoindolinone scaffolds has been developed. This protocol is conducted under gas-free conditions by using benzene-1,3,5-triyl triformate (TFBen) as a convenient CO surrogate, furnishing a variety of isoindolinone derivatives in moderate to high yields (up to 95%).
RESUMEN
In this Communication, a palladium-catalyzed carbonylative synthesis of substituted cyclopentenones has been developed. With aryl iodides and internal alkynes as the substrates, via a domino process consisting of a formal Pauson-Khand reaction, good yields of the desired products were obtained. Interestingly, formic acid has been used both as a hydrogen source and a carbon monoxide source in this system.
RESUMEN
A nickel-catalyzed molybdenum-promoted carbonylative coupling reaction for the synthesis of benzophenones from aryl iodides has been developed. Various substituted diaryl ketones were synthesized in moderate to excellent yields under CO-gas-free conditions. A synergetic effect of both nickel and molybdenum has been observed, which is also responsible for the success of this transformation.