Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39251466

RESUMEN

In this study, we investigated the potential therapeutic mechanism of ginsenoside Rg1 (GRg1) in chronic heart failure (CHF), focusing on its regulation of ERK1/2 protein phosphorylation. H9c2 cardiomyocytes and SD rats were divided into the control group, CHF (ADR) group, and CHF+ginsenoside Rg1 group using an isolated cardiomyocyte model and an in vivo CHF rat model induced by adriamycin (ADR). Cell viability, proliferation, apoptosis, and the expression of relevant proteins were measured to assess the effects of GRg1. The results showed that treatment with GRg1 increased cell activity and proliferation, while significantly reducing levels of inflammatory and apoptotic factors compared to the CHF (ADR) group. Moreover, the CHF+ginsenoside Rg1 group exhibited higher levels of Bcl-2 mRNA and protein expression, as well as lower levels of Caspase3 and Bax mRNA and protein expression, compared to the CHF (ADR) group. Notably, the CHF+ginsenoside Rg1 group displayed decreased serum NT-proBNP levels and heart weight/body weight (HW/BW) index. Furthermore, the electrocardiogram of rats in the CHF+ginsenoside Rg1 group resembled that of rats in the control group. Overall, our findings suggested that GRg1 alleviated CHF by inhibiting ERK1/2 protein phosphorylation, thereby inhibiting apoptosis, enhancing cell activity and proliferation, and reducing cardiac inflammatory responses.

2.
Front Cardiovasc Med ; 11: 1396311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027007

RESUMEN

Background: Chronic heart failure (CHF) patients exhibit alterations in cerebral cortical structure and cognitive function. However, the mechanisms by which CHF affects cortical structure and functional regions remain unknown. This study aims to investigate potential causal relationship between CHF and cerebral cortical structure through Mendelian randomization (MR). Methods: The research utilized genome-wide association studies (GWAS) to explore the causal association between CHF and cerebral cortical structure. The results were primarily analyzed using the inverse-variance weighted (IVW). The reliability of the data was verified through horizontal pleiotropy and heterogeneity analysis by MR-Egger intercept test and Cochran's Q-test, respectively. Replication analysis was conducted in the Integrative Epidemiology Unit (IEU) OpenGWAS project for further validation. In addition, we collected mediator genes that mediate causality to reveal potential mechanisms. Integrated bioinformatics analysis was conducted using the Open Target Genetics platform, the STRING database, and Cytoscape software. Results: The IVW results did not reveal any significant causal association between genetically predicted CHF and the overall structure of the cerebral cortex or the surface area (SA) of the 34 functional regions of the cerebral cortex (P > 0.05). However, the results revealed that CHF increased the thickness (TH) of pars opercularis (IVW: ß = 0.015, 95% CI: 0.005-0.025, P = 3.16E-03). Replication analysis supported the causal association between CHF and pars opercularis TH (IVW: ß = 0.02, 95% CI: 0.010-0.033, P = 1.84E-04). We examined the degree centrality values of the top 10 mediator genes, namely CDKN1A, CELSR2, NME5, SURF4, PSMA5, TSC1, RPL7A, SURF6, PRDX3, and FTO. Conclusion: Genetic evidence indicates a positive correlation between CHF and pars opercularis TH.

3.
Adv Healthc Mater ; 12(22): e2300167, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37223944

RESUMEN

Due to their complexity and variability, tumors need to be treated with multimodal combined therapy, which requires the development of therapeutic agents that can provide multimodal therapeutic effects. Herein, CuMoO4 nanodots smaller than 10 nm that can be prepared by simple hydrothermal method are reported. These nanodots can be well dispersed in water and have good biosafety and biodegradability. Further studies show that these nanodots also present multienzyme activities, such as catalase, peroxidase and glutathione peroxidase. In addition, CuMoO4 nanodots exhibit high photothermal conversion efficiency (41%) under 1064 nm near-infrared laser irradiation. In vitro and in vivo experimental results indicate that CuMoO4 nanodots can effectively inhibit the instinctive regulation of tumor cells to oxidative stress, provide sustained treatment to achieve photothermal synergistic ferroptosis, and trigger immune responses to immunogenic cell death. It is worth mentioning that the CuMoO4 nanodots also cause cuproptosis of tumor cells. This study provides a promising nanoplatform for multimodal combined therapy of cancer.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Línea Celular Tumoral , Fototerapia , Neoplasias/tratamiento farmacológico , Terapia Combinada , Rayos Infrarrojos , Nanopartículas/uso terapéutico
4.
J Colloid Interface Sci ; 651: 567-578, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37562299

RESUMEN

The limitations of light source limit the clinical application of optical therapy technology. How to improve the application efficiency of radiant light has become the focus of researchers. Here, we synthesize a kind of UCNPs@PVP-GOx-PpIX-Fe3+ (UPGPF) nanoreactors with rare earth upconversion nanoparticles (UCNPs) as the substrate for the enhancement of ferroptosis effect by the synergistic starvation/photodynamic therapies. Firstly, glucose oxidase (GOx) and Fe3+ loaded in UPGPF nanoreactors are used to directly face the problems of insufficient H2O2 level in tumor tissue and low Fenton reaction efficiency. Further, UCNPs can absorb NIR light at 980 nm and convert low-energy photons into high-energy photons, thereby cleverly generating ultraviolet (UV) radiation induction in vivo, which can produce a synergistic effect of enhancing iron death. The in vivo experimental results of breast cancer model mice show that the UPGPF nanoreactors have significant anticancer effect and good biosafety. With the help of the optical conversion characteristics of UCNPs, this kind of treatment idea of building a UV radiation-induced microplatform in the tumor microenvironment, which leads to the synergistic enhancement of iron death effect, provides a promising innovative design strategy for tumor research.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias , Animales , Ratones , Rayos Ultravioleta , Peróxido de Hidrógeno , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico , Nanotecnología , Hierro , Línea Celular Tumoral , Microambiente Tumoral
5.
Am J Transl Res ; 15(11): 6425-6436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074801

RESUMEN

BACKGROUND: Despite a crucial role of miR-155 in human cancers, its function in heart failure (HF) is still under investigation. This study was designed to explore its association with HF. METHODS: The abdominal transverse aortic constriction (TAC) was adopted for establishment of mouse HF models. qRT-PCR and WB were adopted to detect the changes of miR-155, HIF-1α, Cle-caspase-3, BCL2 and Bax levels in myocardial cells and heart tissues. The changes of cardiac function were checked by ultrasound. Additionally, luciferase reporter gene was adopted for interaction analysis of miR-155 with HIF-1α, and in situ end labelling method was used for detecting myocardial apoptosis. RESULTS: MiR-155 in myocardial tissue of HF mice was significantly down regulated. In HF mice injected with agomiR-155, the up-regulation of miR-155 strongly improved cardiac function, and also significantly lowered the protein levels of apoptosis-associated markers, C-caspase-3 and Bax, but up regulated Bcl-2. Additionally, HIF-1α was identified as the direct target of miR-155. As expected, over-expression of HIF-1α greatly reversed the effects of agomiR-155 on cardiac function and the expression of apoptosis-associated markers in heart tissues of HF mice. CONCLUSION: MiR-155 overexpression can suppress myocardial cell apoptosis through HIF-1α, and strongly alleviate the cardiac function damage in HF mice, indicating the potential of miR-155/HIF-1α axis to be a target for the diagnosis and therapy of HF.

6.
Sci Total Environ ; 770: 145344, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33515881

RESUMEN

The high chlorine dosages in wastewater treatment plants during the COVID-19 pandemic may result in increased formation of disinfection by-products (DBPs), posing great threat to the aquatic ecosystem of the receiving water body and the public health in the downstream area. However, limited information is available on the effect of biological wastewater treatment processes on the formation of CX3R-type DBPs. This study investigated the effect of oxidation ditch (OD) and anaerobic-anoxic-oxic (AAO), two widely used biological wastewater treatment processes, on the formation of five classes of CX3R-type DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetaldehydes (HALs), haloacetonitriles (HANs) and halonitromethanes (HNMs), during chlorination. Experimental results showed that biological treatment effectively reduced the dissolved organic carbon (DOC) and UV254, while it increased the dissolved organic nitrogen (DON), and therefore the ratio of DON/DOC. In addition, increases in the contents of soluble microbial product- and humic acid-like matters, and the transformation of high molecular weight (MW) fractions in the dissolved organic matter into low MW fractions were observed after OD and AAO processes. Although biological treatment effectively decreased the formation of Cl-THMs, Cl-HAAs, Cl-HANs and Cl-HNMs, the formation of DBCM, DBAA, BDCAA, DBCAA, DCAL, TCAL and DBAN (where C = chloro, B = bromo, D = di, T = tri) all increased significantly, due to the increased formation reactivity. Moreover, biological treatment increased the ratio of bromide/DOC and bromine incorporation into THMs, HAAs and DHANs except for HALs and THANs. Different from previous studies, this study revealed that biological treatment increased the formation of some DBPs, especially brominated DBPs, despite the efficient removal of organic matters. It provides insights into the DBP risk control in wastewater treatment, particularly during the COVID-19 pandemic.

7.
Artículo en Inglés | MEDLINE | ID: mdl-34335842

RESUMEN

Chronic heart failure (CHF) refers to the state of persistent heart failure, which is a complex clinical syndrome of various advanced heart diseases. The toll-like receptor 2 (TLR2)/nuclear transcription factor-κB (NF-κB) signal transduction pathway is one of the pathological mechanisms of CHF. Adriamycin can significantly induce the upregulation of TLR2 expression. Angiotensin-converting enzyme inhibitors (ACEI) are commonly used drugs for the treatment of CHF. In our study, the CHF model was established by injection of doxorubicin into the rabbit ear vein. The effect of enalapril on the TLR2/NF-κB signaling pathway in CHF rabbits has been analyzed and determined. Our research results showed that enalapril reduced the inflammatory response by inhibiting the activation of the TLR2/NF-κB signaling pathway, thereby improving cardiac structure, myocardial remodeling, and cardiac function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA