Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Bone Miner Metab ; 40(2): 177-188, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35091784

RESUMEN

The differentiation of stem cells into osteoblasts is a key link in the treatment of bone defects and other orthopedic diseases. N6-methyladenosine (m6A) modification, an important post-transcriptional modification, is a methylation that occurs at the N6 site of RNA adenylate. The modification plays a regulatory role in the growth and development of biological individuals, the directional differentiation of stem cells and the occurrence of diseases. It is involved in various processes of the fate decision of stem cells. And it regulates the development and constant renewal of bone and keeps bone homeostasis by controlling and maintaining the balance between osteogenesis and adipogenesis. Meanwhile, it also affects the progress of orthopedic-associated diseases such as degenerative osteoporosis and bone tumor. In this review, we mainly summarize the new findings of three key molecules including Writers, Erasers and Readers which regulate m6A modification, and the emerging role of m6A modification in determining the fate and directed differentiation potential of stem cells, especially highlight the regulatory mechanism of osteogenic differentiation, the balance between osteogenesis and adipogenesis and the occurrence and development of bone-related diseases. It may provide some important ideas about finding new strategies to recover from bone defect and degenerative bone disease.


Asunto(s)
Adenosina , Osteogénesis , Adenosina/genética , Adenosina/metabolismo , Diferenciación Celular , Metilación , Células Madre/metabolismo
2.
Nanotechnology ; 33(24)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35245907

RESUMEN

Black phosphorus (BP) exhibits great potential as antibacterial materials due to its unique photocatalytic activity. However, the unsatisfactory optical absorption and quick recombination of photoinduced electron-hole pairs restrain its photocatalytic antibacterial performance. In this work, silver nanoparticles (AgNPs) were decorated on BP to construct BP@AgNPs nanohybrids and then introduced into poly-l-lactic acid scaffold. Combining the tunable bandgap of BP and the LSPR effect of AgNPs, BP@AgNPs nanohybrids displayed the broaden visible light absorption. Furthermore, AgNPs acted as electron acceptors could accelerate charge transfer and suppress electron-hole recombination. Therefore, BP@AgNPs nanohybrids achieved synergistically enhanced photocatalytic antibacterial activity under visible light irradiation. Fluorescence probe experiment verified that BP@AgNPs promoted the generation of reactive oxygen species, which could disrupt bacteria membrane, damage DNA and oxide proteins, and finally lead to bacteria apoptosis. As a result, the scaffold possessed strong antibacterial efficiency with a bactericidal rate of 97% under light irradiation. Moreover, the scaffold also exhibited good cytocompatibility. This work highlighted a new strategy to develop photocatalytic antibacterial scaffold for bone implant application.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/farmacología , Luz , Pruebas de Sensibilidad Microbiana , Fósforo , Plata/farmacología
3.
Nanotechnology ; 32(45)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34330108

RESUMEN

Black phosphorous (BP) is recognized as an effective reinforcement for polymer scaffold because of its excellent mechanical property and biocompatibility. Nevertheless, its poor stability in physiological environment limits its application in bone repair. In this work, BP was modified with dopamine by self-polymerization approach (donated as BP@PDA) to improve its stability, and then was introduced into poly-L-lactic acid (PLLA) scaffold fabricated by selective laser sintering technology. Results showed the compressive and tensile strength of PLLA/BP@PDA scaffold were improved by 105% and 50%, respectively. The enhanced strength was ascribed to the increased stability of BP and the improved compatibility of BP@PDA with PLLA matrix after modifying with polydopamine. Simultaneously, the bioactivity of PLLA scaffold was significantly improved. It was attributed to that BP@PDA provided the sustained source ofPO43-ions which could capture Ca2+ions from physiological medium to facilitatein situbiomineralization, thereby promoting cell adhesion, proliferation and differentiation. This study demonstrated the great potential of BP@PDA in bone repair.

4.
Differentiation ; 116: 16-25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33157509

RESUMEN

Osteoporosis is a systemic bone disease with bone fragility and increased fracture risk. The non-coding RNAs (ncRNAs) have appeared as important regulators of cellular signaling and pertinent human diseases. Studies have demonstrated that circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) are involved in the progression of osteoporosis through a variety of pathways, and are considered as targets for the prophylaxis and treatment of osteoporosis. Based on an in-depth understanding of their roles and mechanisms in osteoporosis, we summarize the functions and molecular mechanisms of circRNAs and lncRNAs involved in the progression of osteoporosis and provide some new insights for the prognosis, diagnosis and treatment of osteoporosis.


Asunto(s)
Osteogénesis/genética , Osteoporosis/genética , ARN Circular/genética , ARN Largo no Codificante/genética , Densidad Ósea/genética , Huesos/citología , Progresión de la Enfermedad , Humanos , Macrófagos/inmunología , Osteoporosis/patología
5.
Biochem Soc Trans ; 48(4): 1623-1636, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32627832

RESUMEN

Osteoporosis (OP) is a bone metabolic disease, is characterized by degeneration of bone structure and decreased bone mass. It happens in more than 1/3 women and 1/5 men of over than 50 years old, which affects the health and lives of people. The main mechanism of OP is mainly that the dynamic balance between the bone formation and resorption is broken, so that bone resorption is more than bone formation. It is prone to result in bone metabolism disorder. There are many precipitating factor such as elder age, low hormone level, genetic factors and bad hobbies. At the same time, the occurrence of the OP and its complications has different degrees of impact on people's quality of life. Based on the current understanding of the OP, we summarized the etiology, current clinical drugs and potential targeting therapy for OP. Although the research have made many progress in explore what is the novel mechanism and how to improve the effect, there are still many problems in the treatment method that limit its application prospects and need to be solved. In this review, we mainly focus on the mechanism of OP and related research on the targeted treatment of OP. Hopefully, our summary will provide a reference to develop some novel strategies for the target therapy of OP.


Asunto(s)
Productos Biológicos/uso terapéutico , Osteoporosis/epidemiología , Osteoporosis/terapia , Anciano , Desarrollo Óseo , Resorción Ósea , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoporosis/genética
6.
Mol Carcinog ; 56(10): 2245-2257, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28544069

RESUMEN

Cervical cancer is one of the most common malignant tumors in women all over the world. The exact mechanism of occurrence and development of cervical cancer has not been fully elucidated. CD38 is a type II transmembrane glycoprotein, which was found to mediate diverse activities, including signal transduction, cell adhesion, and cyclic ADP-ribose synthesis. Here, we reported that CD38 promoted cell proliferation and inhibited cell apoptosis in cervical cancer cells by affecting the mitochondria functions. We established stable cervical cancer cell lines with CD38 over-expressed. CCK8 assay and colony formation assay indicated that CD38 promoted cervical cancer cell proliferation. Nude mouse tumorigenicity assay showed that CD38 significantly promotes tumor growth in vivo. CD38 also induced S phase accumulation in cell cycle analysis and suppressed cell apoptosis in cervical cancer cells. Meanwhile, flow cytometry analysis of mitochondria functions suggested that CD38 decreased intracellular Ca2+ levels in cervical cancer cells and CD38 was involved in down-regulation of ROS levels and prevented mitochondrial apoptosis in cervical cancer cells. The percentage of cells with loss of mitochondrial membrane potential (Δψm) in CD38-overexpressed cervical cancer cells was less than control groups. Furthermore, we found an up-regulation of MDM2, cyclinA1, CDK4, cyclinD1, NF-kB P65, c-rel, and a downregulation of P53, P21, and P38 by Western blot analysis. These results indicated that CD38 enhanced the proliferation and inhibited the apoptosis of cervical cancer cells by affecting the mitochondria functions.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Calcio/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitocondrias/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
J Mater Sci Mater Med ; 28(9): 130, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28730462

RESUMEN

Mg-5.6Zn-0.5Zr alloy (ZK60) tends to degrade too rapid for orthopedic application, in spite of its natural degradation, suitable strength and good biocompatibility. In this study, Nd was alloyed with ZK60 via laser melting method to enhance its corrosion resistance. The microstructure features, mechanical properties and corrosion behaviors of ZK60-xNd (x = 0, 1.8, 3.6, 5.4 wt.%) were investigated. Results showed that laser melted ZK60-xNd were composed of fine ɑ-Mg grains and intermetallic phases along grain boundaries. And the precipitated intermetallic phases experienced successive changes: divorced island-like MgZn phase → honeycomb-like T phase → coarsened and agglomerated W phase with Nd increasing. It was worth noting that ZK60-3.6Nd with honeycomb-like T phase exhibited an optimal corrosion behavior with a corrosion rate of 1.56 mm year-1. The improved corrosion behavior was ascribed to: (I) dense surface film caused by the formation of Nd2O3 hindered the invasion of immersion solution; (II) the three-dimensional honeycomb structure of intermetallic phases formed a tight barrier to restrain the propagation of corrosion. Moreover, ZK60-3.6Nd exhibited good biocompatibility. It was suggested that ZK60-3.6Nd was a preferable candidate for biodegradable bone implant.


Asunto(s)
Aleaciones , Interfase Hueso-Implante , Neodimio/química , Implantes Absorbibles , Animales , Huesos , Línea Celular Tumoral , Corrosión , Humanos , Ensayo de Materiales , Fenómenos Mecánicos , Osteosarcoma , Propiedades de Superficie , Circonio
8.
Molecules ; 22(4)2017 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-28333113

RESUMEN

Diopside (DIOP) was introduced into polyetheretherketone/polyglycolicacid (PEEK/PGA) scaffolds fabricated via selective laser sintering to improve bioactivity. The DIOP surface was then modified using a silane coupling agent, 3-glycidoxypropyltrimethoxysilane (KH570), to reinforce interfacial adhesion. The results showed that the tensile properties and thermal stability of the scaffolds were significantly enhanced. It could be explained that, on the one hand, the hydrophilic group of KH570 formed an organic covalent bond with the hydroxy group on DIOP surface. On the other hand, there existed relatively high compatibility between its hydrophobic group and the biopolymer matrix. Thus, the ameliorated interface interaction led to a homogeneous state of DIOP dispersion in the matrix. More importantly, an in vitro bioactivity study demonstrated that the scaffolds with KH570-modified DIOP (KDIOP) exhibited the capability of forming a layer of apatite. In addition, cell culture experiments revealed that they had good biocompatibility compared to the scaffolds without KDIOP. It indicated that the scaffolds with KDIOP possess potential application in tissue engineering.


Asunto(s)
Silanos/síntesis química , Ácido Silícico/química , Línea Celular , Humanos , Silanos/química , Propiedades de Superficie
9.
Tumour Biol ; 37(5): 5751-60, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26880583

RESUMEN

Nasopharyngeal carcinoma-associated gene 6 (NGX6) is a membrane protein primarily located in the nuclear membrane and cell membrane. Several groups reported that NGX6 gene was down-regulated in nasopharyngeal carcinoma (NPC), gastric cancer, lung cancer, liver cancer, and colorectal cancer and even less in the carcinomas with metastasis. Current studies have demonstrated that NGX6 possesses various biological functions, such as regulating protein expression of related genes, involving cell signal transduction pathways, negatively controlling cell cycle progression, inhibiting angiogenesis, and increasing the sensitivity of patients to anti-cancer drugs. Some factors regulating the expression level of NGX6 gene also have been studied. The methylation of promoter of NGX6 and histone H3K9 negatively regulates its expression, similar to the function of transcription factor special protein-1 (Sp1). However, the regulatory factor early growth response gene 1 (Egr-1) is provided with positive regulation function. This review will summarize the progress of those studies on NGX6 and elucidate the potential application of NGX6 for some malignant diseases.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/fisiología , Metástasis de la Neoplasia/genética , Proteínas Supresoras de Tumor/fisiología , Ciclo Celular , Metilación de ADN , Resistencia a Antineoplásicos/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/fisiología , Genes Supresores de Tumor , Código de Histonas , Humanos , Proteínas de la Membrana/genética , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Neovascularización Patológica/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética
10.
Tumour Biol ; 37(1): 729-37, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26245991

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as a major regulator of cancer. Significant fraction of lncRNAs is represented on widely used microarray platforms; however, many of which have no known function. To discover novel lung cancer-related lncRNAs, we analyzed the lncRNA expression patterns in five sets of previously published lung cancer gene expression profile data that were represented on Affymetrix HG-U133 Plus 2.0 array, and identified dysregulated lncRNAs in lung cancer. One lncRNA, actin filament associated protein 1 antisense RNA1 (AFAP1-AS1), was the most significantly upregulated in lung cancer and associated with poor prognosis. In vitro experiments demonstrated that AFAP1-AS1 knockdown significantly inhibited the cell invasive and migration capability in lung cancer cells. AFAP1-AS1 knockdown also increased the expression of its antisense protein coding gene, actin filament associated protein 1 (AFAP1), and affected the expression levels of several small GTPase family members and molecules in the actin cytokeratin signaling pathway, which suggested that AFAP1-AS1 promoted cancer cell metastasis via regulation of actin filament integrity. Our findings extend the number of noncoding RNAs functionally implicated in lung cancer progression and highlight the role of AFAP1-AS1 as potential prognostic biomarker and therapeutic target of lung cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , ARN Largo no Codificante/genética , Línea Celular Tumoral , Movimiento Celular/genética , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/mortalidad , Invasividad Neoplásica , Metástasis de la Neoplasia , Pronóstico , Transducción de Señal , Regulación hacia Arriba
11.
BMC Cancer ; 16: 218, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26975503

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is prevalent in South East Asia and Southern China particularly, despite the reported 5-year survival ratio is relative higher than other deadly cancers such as liver, renal, pancreas cancer, the lethality is characterized by high metastatic potential in the early stage and high recurrence rate after radiation treatment. MicroRNA-29c was found to be down-regulated in the serum as well as in the tissue of nasopharyngeal carcinoma tissue. METHODS: In this study, we found accidentally that the transfection of pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a but doesn't affect that of miR-222 using real-time quantitative PCR in nasopharyngeal carcinoma cell lines. To explore the molecular mechanism of the regulatory role, the cells are treated with 5-Aza-2-deoxycytidine (5-Aza-CdR) treatment and the level of miR-34c and miR-449a but not miR-222 accumulated by the treatment. DNA methyltransferase 3a, 3b were down-regulated by the 5-Aza-CdR treatment with western blot and real-time quantitative PCR. RESULTS: We found that pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a. We further found DNA methyltransferase 3a and 3b are the target gene of miR-29c. Restoration of miR-29c in NPC cells down-regulated DNA methyltransferase 3a, 3b, but not DNA methyltransferase T1. CONCLUSIONS: The regulation of miR-29c/DNMTs/miR-34c\449a is an important molecular axis of NPC development and targeting DNMTs or restoring of miR-29c might be a promising therapy strategy for the prevention of NPC.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , MicroARNs/biosíntesis , Neoplasias Nasofaríngeas/genética , Apoptosis/genética , Carcinoma , Línea Celular Tumoral , China , ADN Metiltransferasa 3A , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , ADN Metiltransferasa 3B
12.
Philos Trans A Math Phys Eng Sci ; 374(2062)2016 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-26809571

RESUMEN

The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation.

13.
J Biochem Mol Toxicol ; 30(4): 186-91, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26709120

RESUMEN

It is well established that crosstalk between cancer-associated fibroblasts (CAFs) and cancer cells plays a critical role in the occurrence and development of oral squamous cell carcinoma (OSCC). The molecular mechanisms underlying such interaction, however, remain far from clear. Accumulating data have indicated that microRNAs involved in tumor microenvironment, particularly in CAFs, contribute to the activation of fibroblasts and metastasis of cancer cells. Here, we showed that miR-148a was downregulated in CAFs compared with normal fibroblasts isolated from clinical OSCC tissue. Investigation of miR-148a function in fibroblasts demonstrated that overexpression of miR-148a in CAFs significantly impaired the migration and invasion of oral carcinoma cells (SCC-25) by directly targeting WNT10B. Taken together, these data suggested that miR-148a might be a novel candidate target for the treatment of OSCC.


Asunto(s)
Carcinoma de Células Escamosas/genética , Regulación hacia Abajo , MicroARNs/genética , Neoplasias de la Boca/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Wnt/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Fibroblastos/patología , Humanos , Neoplasias de la Boca/patología
14.
Int J Gynecol Cancer ; 26(9): 1564-1570, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27603915

RESUMEN

Ovarian cancer is the leading cause of death among women with gynecologic malignancies. The development and progression of ovarian cancer are complex and a multiple-step process. New biomarker molecules for diagnostic and prognostic are essential for novel therapeutic targets and to extend the survival time of patients with ovarian cancer. Long noncoding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides that have recently been found as key regulators of various biological processes and to be involved in the development and progression of many diseases including cancers. In this review, we summarized the expression pattern of several dysregulated lncRNAs (HOTAIR, H19, XIST, and HOST2) and the functional molecular mechanism of these lncRNAs on the initiation and progression of ovarian cancer. The lncRNAs as biomarkers may be used for current and future clinical diagnosis, therapeutics, and prognosis.


Asunto(s)
Carcinoma/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/metabolismo , ARN Largo no Codificante/metabolismo , Femenino , Humanos
15.
Molecules ; 21(3): 378, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26999100

RESUMEN

There are urgent demands for satisfactory antibacterial activity and mechanical properties of bone scaffolds. In this study, zinc oxide whisker (ZnOw) was introduced into calcium sulfate/bioglass scaffolds. Antimicrobial behavior was analyzed using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that the scaffolds presented a strong antibacterial activity after introducing ZnOw, due to the antibacterial factors released from the degradation of ZnO. Moreover, ZnOw was also found to have a distinct reinforcing effect on mechanical properties. This was ascribed to whisker pull-out, crack bridging, crack deflection, crack branching and other toughening mechanisms. In addition, the cell culture experiments showed that the scaffolds with ZnOw had a good biocompatibility.


Asunto(s)
Antibacterianos/uso terapéutico , Regeneración Ósea/efectos de los fármacos , Cerámica/uso terapéutico , Andamios del Tejido/química , Antibacterianos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Sulfato de Calcio/química , Técnicas de Cultivo de Célula , Cerámica/química , Escherichia coli/efectos de los fármacos , Humanos , Staphylococcus aureus/efectos de los fármacos , Óxido de Zinc/química
16.
J Biol Chem ; 289(52): 35731-42, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25378401

RESUMEN

Our previous study demonstrated that the NGX6b gene acts as a suppressor in the invasion and migration of nasopharyngeal carcinoma (NPC). Recently, we identified the novel isoform NGX6a, which is longer than NGX6b. In this study, we first found that NGX6a was degraded in NPC cells and that this degradation was mediated by ezrin, a linker between membrane proteins and the cytoskeleton. Specific siRNAs against ezrin increase the protein level of NGX6a in these cells. During degradation, NGX6a is not ubiquitinated but is degraded through a proteasome-dependent pathway. The distribution pattern of ezrin was negatively associated with NGX6a in an immunochemistry analysis of a nasopharyngeal carcinoma tissue microarray and fetus multiple organ tissues and Western blot analysis in nasopharyngeal and NPC cell lines, suggesting that ezrin and NGX6a are associated and are involved in the progression and invasion of NPC. By mapping the interacting binding sites, the seven-transmembrane domain of NGX6a was found to be the critical region for the degradation of NGX6a, and the amino terminus of ezrin is required for the induction of NGX6a degradation. The knockdown of ezrin or transfection of the NGX6a mutant CO, which has an EGF-like domain and a transmembrane 1 domain, resulted in no degradation, significantly reducing the ability of invasion and migration of NPC cells. This study provides a novel molecular mechanism for the low expression of NGX6a in NPC cells and an important molecular event in the process of invasion and metastasis of nasopharyngeal carcinoma cells.


Asunto(s)
Proteínas del Citoesqueleto/fisiología , Proteínas de la Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Carcinoma , Línea Celular Tumoral , Citoesqueleto/metabolismo , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/metabolismo , Proteolisis , Ubiquitinación
18.
J Biochem Mol Toxicol ; 29(2): 70-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25199511

RESUMEN

Carcinoma-associated fibroblasts (CAFs) have been demonstrated to play an important role in the occurrence and development of oral squamous cell carcinoma (OSCC). The aim of this study is to investigate the influence of CAFs on OSCC cells and to explore the role of focal adhesion kinase (FAK) in this process. The results showed that oral CAFs expressed a higher level of FAK than normal human gingival fibroblasts (HGFs), and the conditioned medium (CM) of CAFs could induce the invasion and migration of SCC-25, one oral squamous carcinoma cell line. However, knockdown of FAK by small interfering RNA (siRNA) resulted in inhibition of CAF-CM induced cell invasion and migration in SCC-25, probably by reducing the production of monocyte chemoattractant protein-1 (MCP-1/CCL2), one of downstream target chemokines. Therefore, our findings indicated that targeting FAK in CAFs might be a promising strategy for the treatment of OSCC in the future.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Quimiocina CCL2/biosíntesis , Fibroblastos/metabolismo , Quinasa 1 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca/mortalidad , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Quimiocina CCL2/genética , Regulación hacia Abajo , Fibroblastos/patología , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética
19.
J Mater Sci Mater Med ; 26(5): 188, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25917828

RESUMEN

Akermanite (AKM) is considered to be a promising bioactive material for bone tissue engineering due to the moderate biodegradability and excellent biocompatibility. However, the major disadvantage of AKM is the relatively inadequate fracture toughness, which hinders the further applications. In the study, boron nitride nanosheets (BNNSs) reinforced AKM scaffolds are fabricated by selective laser sintering. The effects of BNNSs on the mechanical properties and microstructure are investigated. The results show that the compressive strength and fracture toughness increase significantly with BNNSs increasing from 0.5 to 1.0 wt%. The remarkable improvement is ascribed to pull out and grain wrapping of BNNSs with AKM matrix. While, overlapping sheets is observed when more BNNSs are added, which results in the decline of mechanical properties. In addition, it is found that the composite scaffolds possess good apatite-formation ability when soaking in simulated body fluids, which have been confirmed by energy dispersed spectroscopy and flourier transform infrared spectroscopy. Moreover, MG63 osteoblast-like cells and human bone marrow stromal cells are seeded on the scaffolds. Scanning electron microscopy analysis confirms that both cells adhere and proliferate well, indicating favorable cytocompatibility. All the facts demonstrate the AKM scaffolds reinforced by BNNSs have potential applications for tissue engineering.


Asunto(s)
Sustitutos de Huesos/síntesis química , Compuestos de Boro/química , Cerámica/química , Nanopartículas/química , Osteoblastos/fisiología , Andamios del Tejido , Trasplante Óseo/instrumentación , Adhesión Celular/fisiología , Línea Celular , Proliferación Celular/fisiología , Fuerza Compresiva , Diseño de Equipo , Análisis de Falla de Equipo , Dureza , Humanos , Ensayo de Materiales , Nanopartículas/ultraestructura , Osteoblastos/citología , Tamaño de la Partícula , Ingeniería de Tejidos/instrumentación
20.
Int J Mol Sci ; 16(4): 6818-30, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25815597

RESUMEN

Nano SiO2 and MgO particles were incorporated into ß-tricalcium phosphate (ß-TCP) scaffolds to improve the mechanical and biological properties. The porous cylindrical ß-TCP scaffolds doped with 0.5 wt % SiO2, 1.0 wt % MgO, 0.5 wt % SiO2 + 1.0 wt % MgO were fabricated via selective laser sintering respectively and undoped ß-TCP scaffold was also prepared as control. The phase composition and mechanical strength of the scaffolds were evaluated. X-ray diffraction analysis indicated that the phase transformation from ß-TCP to α-TCP was inhibited after the addition of MgO. The compressive strength of scaffold was improved from 3.12 ± 0.36 MPa (ß-TCP) to 5.74 ± 0.62 MPa (ß-TCP/SiO2), 9.02 ± 0.55 MPa (ß-TCP/MgO) and 10.43 ± 0.28 MPa (ß-TCP/SiO2/MgO), respectively. The weight loss and apatite-forming ability of the scaffolds were evaluated by soaking them in simulated body fluid. The results demonstrated that both SiO2 and MgO dopings slowed down the degradation rate and improved the bioactivity of ß-TCP scaffolds. In vitro cell culture studies indicated that SiO2 and MgO dopings facilitated cell attachment and proliferation. Combined addition of SiO2 and MgO were found optimal in enhancing both the mechanical and biological properties of ß-TCP scaffold.


Asunto(s)
Materiales Biocompatibles/química , Fosfatos de Calcio/química , Óxido de Magnesio/química , Dióxido de Silicio/química , Andamios del Tejido/química , Línea Celular Tumoral , Proliferación Celular , Humanos , Ensayo de Materiales/métodos , Microscopía Electrónica de Rastreo , Porosidad , Propiedades de Superficie , Ingeniería de Tejidos/métodos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA