Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Dairy Sci ; 107(8): 5416-5426, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38490558

RESUMEN

Diarrheagenic Escherichia coli (DEC) is a kind of foodborne pathogen that poses a significant threat to both food safety and human health. To address the current challenges of high prevalence and difficult subtyping of DEC, this study developed a method that combined multiplex PCR with high-resolution melting (HRM) analysis for subtyping 5 kinds of DEC. The target genes are amplified by multiplex PCR in a single well, and HRM curve analysis was applied for distinct amplicons based on different melting temperature (Tm) values. The method enables discrimination of different DEC types based on characteristic peaks and distinct Tm values in the thermal melting curve. The assay exhibited 100% sensitivity and 100% specificity with a detection limit of 0.5 to 1 ng/µL. The results showed that different DNA concentrations did not influence the subtyping results, demonstrating this method owed high reliability and stability. In addition, the method was also used for the detection and subtyping of DEC in milk. This method streamlines operational procedures, shorts the detection time, and offers a novel tool for subtyping DEC.


Asunto(s)
Escherichia coli , Leche , Reacción en Cadena en Tiempo Real de la Polimerasa , Leche/microbiología , Animales , Escherichia coli/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Sensibilidad y Especificidad , Reproducibilidad de los Resultados
2.
Foodborne Pathog Dis ; 21(5): 316-322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38354216

RESUMEN

In China, Salmonella is one of the most frequent causes of bacterial gastroenteritis, and food handlers in restaurants as an important contaminated source were rarely reported. In May 2023, an outbreak of Salmonella enterica serovar Enteritidis infection in a restaurant in Jiangxi Province, China, was investigated. Cases were interviewed. Stool samples from cases, anal swabs from restaurant employees, suspicious raw food materials, and semifinished food were collected and examined. Pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) were performed to determine the relatedness of the pathogen isolates. Antimicrobial resistance genes and virulence genes of isolates were analyzed by WGS. The antimicrobial profile of the isolates was detected by broth microdilution, which involved 20 different antibiotics. Among the 31 patrons, 26 showed gastrointestinal symptoms. Five Salmonella Enteritidis strains were isolated from patients (2), semifinished food (2), and food handler (1). The results of PFGE and single-nucleotide polymorphism showed that these five isolates were identical clones. These findings demonstrated that this outbreak was a restaurant Salmonella Enteritidis outbreak associated with an infected food handler. The rates of resistance to nalidixic acid and colistin and intermediate resistance to ciprofloxacin were 100%, 80%, and 100%, respectively. These outbreak isolates harbored point mutation gyrA p.D87G. The cause of inconsistency between the genotype and phenotype of resistance was deeply discussed. A total of 107 virulence genes were found in each isolate, with many being associated with Salmonella pathogenicity island (SPI)-1 and SPI-2. As an overlooked contamination source, infected food handlers can easily cause large-scale outbreaks. This outbreak highlighted that the government should enhance the training and supervision of food hygiene and safety for food handlers to prevent foodborne outbreaks.


Asunto(s)
Brotes de Enfermedades , Restaurantes , Intoxicación Alimentaria por Salmonella , Salmonella enteritidis , Secuenciación Completa del Genoma , Humanos , Salmonella enteritidis/genética , Salmonella enteritidis/aislamiento & purificación , Salmonella enteritidis/efectos de los fármacos , China/epidemiología , Intoxicación Alimentaria por Salmonella/epidemiología , Intoxicación Alimentaria por Salmonella/microbiología , Antibacterianos/farmacología , Manipulación de Alimentos , Masculino , Femenino , Microbiología de Alimentos , Adulto , Electroforesis en Gel de Campo Pulsado , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Heces/microbiología , Genoma Bacteriano
3.
Sci Total Environ ; 946: 174368, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38955273

RESUMEN

The possible contamination routes, environmental adaptation, and genetic basis of Cronobacter spp. in infant and follow-up formula production factories and retailed products in mainland China have been determined by laboratory studies and whole-genome comparative analysis in a 7-year nationwide continuous surveillance spanning from 2012 to 2018. The 2-year continuous multicenter surveillance of the production process (conducted in 2013 and 2014) revealed that the source of Cronobacter spp. in the dry-blending process was the raw dry ingredients and manufacturing environment (particularly in the vibro sieve and vacuum cleaner), while in the combined process, the main contamination source was identified as the packing room. It is important to note that, according to the contamination control knowledge obtained from the production process surveillance, the contamination rate of retail powdered infant formula (PIF) and follow-up formula (FUF) products in China decreased significantly from 2016 onward, after improving the hygiene management practices in factories. The prevalence of Cronobacter spp. in retailed PIF and FUF in China in 2018 was dramatically reduced from 1.55 % (61/3925, in 2012) to an average as low as 0.17 % (13/7655 in 2018). Phenotype determination and genomic analysis were performed on a total of 90 Cronobacter spp. isolates obtained from the surveillance. Of the 90 isolates, only two showed resistance to either cefazolin or cefoxitin. The multilocus sequence typing results revealed that C. sakazakii sequence type 1 (ST1), ST37, and C. malonaticus ST7 were the dominant sequence types (STs) collected from the production factories, while C. sakazakii ST1, ST4, ST64, and ST8 were the main STs detected in the retailed PIF and FUF nationwide. One C. sakazakii ST4 isolate (1.1 %, 1/90) had strong biofilm-forming ability and 13 isolates (14.4 %, 13/90) had weak biofilm-forming ability. Genomic analysis revealed that Cronobacter spp. have a relatively stable core-genome and an increasing pan-genome size. Plasmid IncFIB (pCTU3) was prevalent in this genus and some contained 14 antibacterial biocide- and metal-resistance genes (BMRGs) including copper, silver, and arsenic resistant genes. Plasmid IncN_1 was predicted to contain 6 ARGs. This is the first time that a multi-drug resistance IncN_1 type plasmid has been reported in Cronobacter spp. Genomic variations with respect to BMRGs, virulence genes, antimicrobial resistance genes (ARGs), and genes involved in biofilm formation were observed among strains of this genus. There were apparent differences in copies of bcsG and flgJ between the biofilm-forming group and non-biofilm-forming group, indicating that these two genes play key roles in biofilm formation. The findings of this study have improved our understanding of the contamination characteristics and genetic basis of Cronobacter spp. in PIF and FUF and their production environment in China and provide important guidance to reduce contamination with this pathogen during the production of PIF and FUF.


Asunto(s)
Cronobacter , Fórmulas Infantiles , China , Cronobacter/genética , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Humanos , Lactante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA