Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(3): 576-591.e10, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36822205

RESUMEN

Aberrant tissue-immune interactions are the hallmark of diverse chronic lung diseases. Here, we sought to define these interactions in emphysema, a progressive disease characterized by infectious exacerbations and loss of alveolar epithelium. Single-cell analysis of human emphysema lungs revealed the expansion of tissue-resident lymphocytes (TRLs). Murine studies identified a stromal niche for TRLs that expresses Hhip, a disease-variant gene downregulated in emphysema. Stromal-specific deletion of Hhip induced the topographic expansion of TRLs in the lung that was mediated by a hyperactive hedgehog-IL-7 axis. 3D immune-stem cell organoids and animal models of viral exacerbations demonstrated that expanded TRLs suppressed alveolar stem cell growth through interferon gamma (IFNγ). Finally, we uncovered an IFNγ-sensitive subset of human alveolar stem cells that was preferentially lost in emphysema. Thus, we delineate a stromal-lymphocyte-epithelial stem cell axis in the lung that is modified by a disease-variant gene and confers host susceptibility to emphysema.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Ratones , Animales , Enfisema Pulmonar/genética , Pulmón , Linfocitos , Células Madre
2.
Immunity ; 50(3): 707-722.e6, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30824323

RESUMEN

Type 2 lymphocytes promote both physiologic tissue remodeling and allergic pathology, yet their physical tissue niches are poorly described. Here, we used quantitative imaging to define the tissue niches of group 2 innate lymphoid cells (ILC2s), which are critical instigators of type 2 immunity. We identified a dominant adventitial niche around lung bronchi and larger vessels in multiple tissues, where ILC2s localized with subsets of dendritic and regulatory T cells. However, ILC2s were most intimately associated with adventitial stromal cells (ASCs), a mesenchymal fibroblast-like subset that expresses interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP). In vitro, ASCs produced TSLP that supported ILC2 accumulation and activation. ILC2s and IL-13 drove reciprocal ASC expansion and IL-33 expression. During helminth infection, ASC depletion impaired lung ILC2 and Th2 cell accumulation and function, which are in part dependent on ASC-derived IL-33. These data indicate that adventitial niches are conserved sites where ASCs regulate type 2 lymphocyte expansion and function.


Asunto(s)
Inmunidad Innata/inmunología , Linfocitos/inmunología , Células del Estroma/inmunología , Animales , Bronquios/inmunología , Citocinas/inmunología , Interleucina-13/inmunología , Interleucina-33/inmunología , Ratones , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Linfopoyetina del Estroma Tímico
3.
Genes Dev ; 28(12): 1363-79, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24939938

RESUMEN

Long noncoding RNAs (lncRNAs) are thought to play important roles in regulating gene transcription, but few have well-defined expression patterns or known biological functions during mammalian development. Using a conservative pipeline to identify lncRNAs that have important biological functions, we identified 363 lncRNAs in the lung and foregut endoderm. Importantly, we show that these lncRNAs are spatially correlated with transcription factors across the genome. In-depth expression analyses of lncRNAs with genomic loci adjacent to the critical transcription factors Nkx2.1, Gata6, Foxa2 (forkhead box a2), and Foxf1 mimic the expression patterns of their protein-coding neighbor. Loss-of-function analysis demonstrates that two lncRNAs, LL18/NANCI (Nkx2.1-associated noncoding intergenic RNA) and LL34, play distinct roles in endoderm development by controlling expression of critical developmental transcription factors and pathways, including retinoic acid signaling. In particular, we show that LL18/NANCI acts upstream of Nkx2.1 and downstream from Wnt signaling to regulate lung endoderm gene expression. These studies reveal that lncRNAs play an important role in foregut and lung endoderm development by regulating multiple aspects of gene transcription, often through regulation of transcription factor expression.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Pulmón/crecimiento & desarrollo , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Endodermo/citología , Endodermo/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genoma , Células HEK293 , Humanos , Pulmón/embriología , Ratones , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética , Vía de Señalización Wnt
4.
Nature ; 526(7574): 578-82, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26436454

RESUMEN

Postnatal tissue quiescence is thought to be a default state in the absence of a proliferative stimulus such as injury. Although previous studies have demonstrated that certain embryonic developmental programs are reactivated aberrantly in adult organs to drive repair and regeneration, it is not well understood how quiescence is maintained in organs such as the lung, which displays a remarkably low level of cellular turnover. Here we demonstrate that quiescence in the adult lung is an actively maintained state and is regulated by hedgehog signalling. Epithelial-specific deletion of sonic hedgehog (Shh) during postnatal homeostasis in the murine lung results in a proliferative expansion of the adjacent lung mesenchyme. Hedgehog signalling is initially downregulated during the acute phase of epithelial injury as the mesenchyme proliferates in response, but returns to baseline during injury resolution as quiescence is restored. Activation of hedgehog during acute epithelial injury attenuates the proliferative expansion of the lung mesenchyme, whereas inactivation of hedgehog signalling prevents the restoration of quiescence during injury resolution. Finally, we show that hedgehog also regulates epithelial quiescence and regeneration in response to injury via a mesenchymal feedback mechanism. These results demonstrate that epithelial-mesenchymal interactions coordinated by hedgehog actively maintain postnatal tissue homeostasis, and deregulation of hedgehog during injury leads to aberrant repair and regeneration in the lung.


Asunto(s)
Proteínas Hedgehog/metabolismo , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Pulmón/citología , Pulmón/metabolismo , Regeneración , Cicatrización de Heridas , Animales , Proliferación Celular , Regulación hacia Abajo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Retroalimentación Fisiológica , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Homeostasis , Pulmón/patología , Masculino , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Comunicación Paracrina
5.
Nature ; 500(7464): 589-92, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23873040

RESUMEN

Co-development of the cardiovascular and pulmonary systems is a recent evolutionary adaption to terrestrial life that couples cardiac output with the gas exchange function of the lung. Here we show that the murine pulmonary vasculature develops even in the absence of lung development. We have identified a population of multipotent cardiopulmonary mesoderm progenitors (CPPs) within the posterior pole of the heart that are marked by the expression of Wnt2, Gli1 and Isl1. We show that CPPs arise from cardiac progenitors before lung development. Lineage tracing and clonal analysis demonstrates that CPPs generate the mesoderm lineages within the cardiac inflow tract and lung including cardiomyocytes, pulmonary vascular and airway smooth muscle, proximal vascular endothelium, and pericyte-like cells. CPPs are regulated by hedgehog expression from the foregut endoderm, which is required for connection of the pulmonary vasculature to the heart. Together, these studies identify a novel population of multipotent cardiopulmonary progenitors that coordinates heart and lung co-development that is required for adaptation to terrestrial existence.


Asunto(s)
Corazón/embriología , Pulmón/citología , Pulmón/embriología , Células Madre Multipotentes/citología , Mioblastos Cardíacos/citología , Organogénesis , Animales , Gasto Cardíaco , Linaje de la Célula , Endodermo/metabolismo , Corazón/anatomía & histología , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Pulmón/irrigación sanguínea , Mesodermo/citología , Ratones , Modelos Animales , Pericitos/citología , Intercambio Gaseoso Pulmonar , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , Proteína con Dedos de Zinc GLI1
7.
J Clin Invest ; 134(9)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451724

RESUMEN

The appearance of senescent cells in age-related diseases has spurred the search for compounds that can target senescent cells in tissues, termed senolytics. However, a major caveat with current senolytic screens is the use of cell lines as targets where senescence is induced in vitro, which does not necessarily reflect the identity and function of pathogenic senescent cells in vivo. Here, we developed a new pipeline leveraging a fluorescent murine reporter that allows for isolation and quantification of p16Ink4a+ cells in diseased tissues. By high-throughput screening in vitro, precision-cut lung slice (PCLS) screening ex vivo, and phenotypic screening in vivo, we identified a HSP90 inhibitor, XL888, as a potent senolytic in tissue fibrosis. XL888 treatment eliminated pathogenic p16Ink4a+ fibroblasts in a murine model of lung fibrosis and reduced fibrotic burden. Finally, XL888 preferentially targeted p16INK4a-hi human lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis (IPF), and reduced p16INK4a+ fibroblasts from IPF PCLS ex vivo. This study provides proof of concept for a platform where p16INK4a+ cells are directly isolated from diseased tissues to identify compounds with in vivo and ex vivo efficacy in mice and humans, respectively, and provides a senolytic screening platform for other age-related diseases.


Asunto(s)
Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Fibroblastos , Fibrosis Pulmonar Idiopática , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Ratones , Humanos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/genética , Senoterapéuticos/farmacología , Masculino , Pulmón/patología , Pulmón/metabolismo , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética
8.
Elife ; 122023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37830426

RESUMEN

Background: Infection by coronavirus SARS-CoV2 is a severe and often deadly disease that has implications for the respiratory system and multiple organs across the human body. While the effects in the lung have been extensively studied, less is known about the impact COVID-19 has across other organs. Methods: Here, we contribute a single-nuclei RNA-sequencing atlas comprising six human organs across 20 autopsies where we analyzed the transcriptional changes due to COVID-19 in multiple cell types. The integration of data from multiple organs enabled the identification of systemic transcriptional changes. Results: Computational cross-organ analysis for endothelial cells and macrophages identified systemic transcriptional changes in these cell types in COVID-19 samples. In addition, analysis of gene modules showed enrichment of specific signaling pathways across multiple organs in COVID-19 autopsies. Conclusions: Altogether, the COVID Tissue Atlas enables the investigation of both cell type-specific and cross-organ transcriptional responses to COVID-19, providing insights into the molecular networks affected by the disease and highlighting novel potential targets for therapies and drug development. Funding: The Chan-Zuckerberg Initiative, The Chan-Zuckerberg Biohub.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Células Endoteliales , ARN Viral , Pulmón
9.
Sci Adv ; 9(49): eadj4884, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064566

RESUMEN

Oxygen deprivation and excess are both toxic. Thus, the body's ability to adapt to varying oxygen tensions is critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational effects of oxygen have been underexplored. In this study, we systematically investigate protein turnover rates in mouse heart, lung, and brain under different inhaled oxygen tensions. We find that the lung proteome is the most responsive to varying oxygen tensions. In particular, several extracellular matrix (ECM) proteins are stabilized in the lung under both hypoxia and hyperoxia. Furthermore, we show that complex 1 of the electron transport chain is destabilized in hyperoxia, in accordance with the exacerbation of associated disease models by hyperoxia and rescue by hypoxia. Moreover, we nominate MYBBP1A as a hyperoxia transcriptional regulator, particularly in the context of rRNA homeostasis. Overall, our study highlights the importance of varying oxygen tensions on protein turnover rates and identifies tissue-specific mediators of oxygen-dependent responses.


Asunto(s)
Hiperoxia , Oxígeno , Animales , Ratones , Encéfalo/metabolismo , Hiperoxia/genética , Hiperoxia/metabolismo , Hipoxia/metabolismo , Pulmón/metabolismo , Oxígeno/metabolismo
10.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37163060

RESUMEN

Group 2 innate lymphoid cells (ILC2s) cooperate with adaptive Th2 cells as key organizers of tissue type 2 immune responses, while a spectrum of innate and adaptive lymphocytes coordinate early type 3/17 immunity. Both type 2 and type 3/17 lymphocyte associated cytokines are linked to tissue fibrosis, but how their dynamic and spatial topographies may direct beneficial or pathologic organ remodelling is unclear. Here we used volumetric imaging in models of liver fibrosis, finding accumulation of periportal and fibrotic tract IL-5 + lymphocytes, predominantly ILC2s, in close proximity to expanded type 3/17 lymphocytes and IL-33 high niche fibroblasts. Ablation of IL-5 + lymphocytes worsened carbon tetrachloride-and bile duct ligation-induced liver fibrosis with increased niche IL-17A + type 3/17 lymphocytes, predominantly γδ T cells. In contrast, concurrent ablation of IL-5 + and IL-17A + lymphocytes reduced this progressive liver fibrosis, suggesting a cross-regulation of type 2 and type 3 lymphocytes at specialized fibroblast niches that tunes hepatic fibrosis.

11.
Front Cell Dev Biol ; 10: 932723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912114

RESUMEN

Aging is the final stage of development with stereotyped changes in tissue morphology. These age-related changes are risk factors for a multitude of chronic lung diseases, transcending the diverse pathogenic mechanisms that have been studied in disease-specific contexts. Two of the hallmarks of aging include inflammation and cellular senescence, which have been attributed as drivers of age-related organ decline. While these two age-related processes are often studied independently in the same tissue, there appears to be a reciprocal relationship between inflammation and senescence, which remodels the aging tissue architecture to increase susceptibility to chronic diseases. This review will attempt to address the "chicken or the egg" question as to whether senescence drives inflammation in the aging lung, or vice versa, and whether the causality of this relationship has therapeutic implications for age-related lung diseases.

12.
Nat Cell Biol ; 24(1): 10-23, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34969962

RESUMEN

Loss of alveolar type 2 cells (AEC2s) and the ectopic appearance of basal cells in the alveoli characterize severe lung injuries such as idiopathic pulmonary fibrosis (IPF). Here we demonstrate that human alveolar type 2 cells (hAEC2s), unlike murine AEC2s, transdifferentiate into basal cells in response to fibrotic signalling in the lung mesenchyme, in vitro and in vivo. Single-cell analysis of normal hAEC2s and mesenchymal cells in organoid co-cultures revealed the emergence of pathologic fibroblasts and basaloid cells previously described in IPF. Transforming growth factor-ß1 and anti-bone morphogenic protein signalling in the organoids promoted transdifferentiation. Trajectory and histologic analyses of both hAEC2-derived organoids and IPF epithelium indicated that hAEC2s transdifferentiate into basal cells through alveolar-basal intermediates that accumulate in proximity to pathologic CTHRC1hi/TGFB1hi fibroblasts. Our study indicates that hAEC2 loss and expansion of alveolar metaplastic basal cells in severe human lung injuries are causally connected through an hAEC2-basal cell lineage trajectory driven by aberrant mesenchyme.


Asunto(s)
Transdiferenciación Celular/fisiología , Células Epiteliales/citología , Fibrosis Pulmonar Idiopática/patología , Queratina-5/metabolismo , Alveolos Pulmonares/citología , Mucosa Respiratoria/citología , Células Epiteliales Alveolares/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Células Cultivadas , Células Epidérmicas/citología , Fibroblastos/citología , Humanos , Mesodermo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Transducción de Señal/fisiología , Análisis de la Célula Individual , Factor de Crecimiento Transformador beta1/metabolismo
13.
Science ; 378(6616): 192-201, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36227993

RESUMEN

We engineered an ultrasensitive reporter of p16INK4a, a biomarker of cellular senescence. Our reporter detected p16INK4a-expressing fibroblasts with certain senescent characteristics that appeared shortly after birth in the basement membrane adjacent to epithelial stem cells in the lung. Furthermore, these p16INK4a+ fibroblasts had enhanced capacity to sense tissue inflammation and respond through their increased secretory capacity to promote epithelial regeneration. In addition, p16INK4a expression was required in fibroblasts to enhance epithelial regeneration. This study highlights a role for p16INK4a+ fibroblasts as tissue-resident sentinels in the stem cell niche that monitor barrier integrity and rapidly respond to inflammation to promote tissue regeneration.


Asunto(s)
Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Células Epiteliales , Fibroblastos , Genes Reporteros , Pulmón , Regeneración , Nicho de Células Madre , Humanos , Membrana Basal/citología , Membrana Basal/fisiología , Biomarcadores/metabolismo , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Fibroblastos/metabolismo , Inflamación/metabolismo , Pulmón/patología , Pulmón/fisiología , Células Epiteliales/fisiología , Nicho de Células Madre/fisiología
14.
Diabetes Res Clin Pract ; 175: 108785, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33781794

RESUMEN

AIMS: This study aimed to explore the effects of a health technology education program on long-term glycemic control and the self-management ability of adults with type 2 diabetes (T2D). METHODS: The study was a randomized controlled trial with repeated measures design. The experimental group (n = 53) received a novel health technologies education program plus focus groups and routine shared care, the control group (n = 55) received routine shared care. Glycosylated hemoglobin (HbA1c) level and self-management ability were the primary and secondary outcomes. Subject self-management ability was evaluated using the Chinese version of Perceived Diabetes Self-Management Scale (PDSMS). A linear mixed-effect model for repeated measures was used to analyze changes in HbA1c level and self-management ability after controlling for pretest effects. RESULTS: The mean HbA1c levels in the experimental group decreased by 0.692% (7.564 mmol/mol) and 0.671% (7.332 mmol/mol) at 3 and 6 months after the intervention (p < 0.05) while the mean increase in the PDSMS scores at 3 and 6 months after the intervention were significantly higher than those in the control group (p < 0.05). CONCLUSION: The health technology education program was more effective than routine shared care alone in lowering HbA1c and increasing self-management ability in T2D patients.


Asunto(s)
Tecnología Biomédica/métodos , Diabetes Mellitus Tipo 2/terapia , Control Glucémico/métodos , Automanejo/métodos , Anciano , Femenino , Humanos , Masculino
15.
Nat Cell Biol ; 22(11): 1295-1306, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33046884

RESUMEN

Aberrant epithelial reprogramming can induce metaplastic differentiation at sites of tissue injury that culminates in transformed barriers composed of scar and metaplastic epithelium. While the plasticity of epithelial stem cells is well characterized, the identity and role of the niche has not been delineated in metaplasia. Here, we show that Gli1+ mesenchymal stromal cells (MSCs), previously shown to contribute to myofibroblasts during scarring, promote metaplastic differentiation of airway progenitors into KRT5+ basal cells. During fibrotic repair, Gli1+ MSCs integrate hedgehog activation signalling to upregulate BMP antagonism in the progenitor niche that promotes metaplasia. Restoring the balance towards BMP activation attenuated metaplastic KRT5+ differentiation while promoting adaptive alveolar differentiation into SFTPC+ epithelium. Finally, fibrotic human lungs demonstrate altered BMP activation in the metaplastic epithelium. These findings show that Gli1+ MSCs integrate hedgehog signalling as a rheostat to control BMP activation in the progenitor niche to determine regenerative outcome in fibrosis.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fibrosis Pulmonar/metabolismo , Nicho de Células Madre , Proteína con Dedos de Zinc GLI1/metabolismo , Células Epiteliales Alveolares/patología , Animales , Bleomicina , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Proteínas Hedgehog/metabolismo , Queratina-5/metabolismo , Pulmón/patología , Células Madre Mesenquimatosas/patología , Metaplasia , Ratones Endogámicos C57BL , Ratones Noqueados , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Transducción de Señal , Receptor Smoothened/metabolismo , Proteína con Dedos de Zinc GLI1/genética
16.
Biomarkers ; 14(3): 156-60, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19399660

RESUMEN

We previously showed that a single nucleotide polymorphism in S100A4 was associated with portopulmonary hypertension (PPHTN) in patients with advanced liver disease. We aimed to determine the association between plasma levels of S100A4 and PPHTN. We performed a case-control study of patients with advanced liver disease. Cases with PPHTN had mean pulmonary artery pressure >25 mmHg, pulmonary vascular resistance >240 dynes s cm(-5) and pulmonary capillary wedge pressure

Asunto(s)
Hipertensión Pulmonar/sangre , Hepatopatías/sangre , Proteínas S100/sangre , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/genética , Hepatopatías/complicaciones , Hepatopatías/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Proteína de Unión al Calcio S100A4 , Proteínas S100/genética
17.
J Dev Biol ; 7(3)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323955

RESUMEN

As a secreted morphogen, Sonic Hedgehog (SHH) determines differential cell fates, behaviors, and functions by forming a gradient of Hedgehog (Hh) activation along an axis of Hh-receptive cells during development. Despite clearly delineated roles for Hh during organ morphogenesis, whether Hh continues to regulate cell fate and behavior in the same fashion in adult organs is less understood. Adult organs, particularly barrier organs interfacing with the ambient environment, are exposed to insults that require renewal of cellular populations to maintain structural integrity. Understanding key aspects of Hh's ability to generate an organ could translate into conceptual understanding of Hh's ability to maintain organ homeostasis and stimulate regeneration. In this review, we will summarize the current knowledge about Hh signaling in regulating adult lung regeneration and maintenance, and discuss how alteration of Hh signaling contributes to adult lung diseases.

18.
Aging Cell ; 18(3): e12914, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30790400

RESUMEN

We previously reported that the canonical innate immune receptor toll-like receptor 4 (TLR4) is critical in maintaining lung integrity. However, the molecular mechanisms via which TLR4 mediates its effect remained unclear. In the present study, we identified distinct contributions of lung endothelial cells (Ec) and epithelial cells TLR4 to pulmonary homeostasis using genetic-specific, lung- and cell-targeted in vivo methods. Emphysema was significantly prevented via the reconstituting of human TLR4 expression in the lung Ec of TLR4-/- mice. Lung Ec-silencing of TLR4 in wild-type mice induced emphysema, highlighting the specific and distinct role of Ec-expressed TLR4 in maintaining lung integrity. We also identified a previously unrecognized role of TLR4 in preventing expression of p16INK4a , a senescence-associated gene. Lung Ec-p16INK4a -silencing prevented TLR4-/- induced emphysema, revealing a new functional role for p16INK4a in lungs. TLR4 suppressed endogenous p16INK4a expression via HDAC2-mediated deacetylation of histone H4. These findings suggest a novel role for TLR4 in maintaining of lung homeostasis via epigenetic regulation of senescence-related gene expression.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Células Endoteliales/metabolismo , Epigénesis Genética/genética , Pulmón/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptor Toll-Like 4/deficiencia
19.
J Clin Invest ; 128(10): 4343-4358, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29999500

RESUMEN

GWAS have repeatedly mapped susceptibility loci for emphysema to genes that modify hedgehog signaling, but the functional relevance of hedgehog signaling to this morbid disease remains unclear. In the current study, we identified a broad population of mesenchymal cells in the adult murine lung receptive to hedgehog signaling, characterized by higher activation of hedgehog surrounding the proximal airway relative to the distal alveoli. Single-cell RNA-sequencing showed that the hedgehog-receptive mesenchyme is composed of mostly fibroblasts with distinct proximal and distal subsets with discrete identities. Ectopic hedgehog activation in the distal fibroblasts promoted expression of proximal fibroblast markers and loss of distal alveoli and airspace enlargement of over 20% compared with controls. We found that hedgehog suppressed mesenchymal-derived mitogens enriched in distal fibroblasts that regulate alveolar stem cell regeneration and airspace size. Finally, single-cell analysis of the human lung mesenchyme showed that segregated proximal-distal identity with preferential hedgehog activation in the proximal fibroblasts was conserved between mice and humans. In conclusion, we showed that differential hedgehog activation segregates mesenchymal identities of distinct fibroblast subsets and that disruption of fibroblast identity can alter the alveolar stem cell niche, leading to emphysematous changes in the murine lung.


Asunto(s)
Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Alveolos Pulmonares/metabolismo , Enfisema Pulmonar/metabolismo , Transducción de Señal , Animales , Fibroblastos/patología , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Noqueados , Alveolos Pulmonares/patología , Enfisema Pulmonar/genética , Enfisema Pulmonar/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA