Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(4): 1168-1175, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251890

RESUMEN

Unveiling materials' corrosion pathways is significant for understanding the corrosion mechanisms and designing corrosion-resistant materials. Here, we investigate the corrosion behavior of Sn@Ni3Sn4 and Sn nanocrystals in an aqueous solution in real time by using high-resolution liquid cell transmission electron microscopy. Our direct observation reveals an unprecedented level of detail on the corrosion of Sn metal with/without a coating of Ni3Sn4 at the nanometric and atomic levels. The Sn@Ni3Sn4 nanocrystals exhibit "pitting corrosion", which is initiated at the defect sites in the Ni3Sn4 protective layer. The early stage isotropic etching transforms into facet-dependent etching, resulting in a cavity terminated with low-index facets. The Sn nanocrystals under fast etching kinetics show uniform corrosion, and smooth surfaces are obtained. Sn nanocrystals show "creeping-like" etching behavior and rough surfaces. This study provides critical insights into the impacts of coating, defects, and ion diffusion on corrosion kinetics and the resulting morphologies.

2.
J Am Chem Soc ; 143(31): 12074-12081, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34328729

RESUMEN

We demonstrated how the special synergy between a noble metal single site and neighboring oxygen vacancies provides an "ensemble reaction pool" for high hydrogen generation efficiency and carbon dioxide (CO2) selectivity of a tandem reaction: methanol steam reforming. Specifically, the hydrogen generation rate over single site Ru1/CeO2 catalyst is up to 9360 mol H2 per mol Ru per hour (579 mLH2 gRu-1 s-1) with 99.5% CO2 selectivity. Reaction mechanism study showed that the integration of metal single site and O vacancies facilitated the tandem reaction, which consisted of methanol dehydrogenation, water dissociation, and the subsequent water gas shift (WGS) reaction. In addition, the strength of CO adsorption and the reaction activation energy difference between methanol dehydrogenation and WGS reaction play an important role in determining the activity and CO2 selectivity. Our study paves the way for the further rational design of single site catalysts at the atomic scale. Furthermore, the development of such highly efficient and selective hydrogen evolution systems promises to deliver highly desirable economic and ecological benefits.

3.
Nano Lett ; 19(1): 591-597, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30582699

RESUMEN

An understanding of nanocrystal shape evolution is significant for the design, synthesis, and applications of nanocrystals with surface-enhanced properties such as catalysis or plasmonics. Surface adsorbates that are selectively attached to certain facets may strongly affect the atomic pathways of nanocrystal shape development. However, it is a great challenge to directly observe such dynamic processes in situ with a high spatial resolution. Here, we report the anomalous shape evolution of Ag2O2 nanocrystals modulated by the surface adsorbates of Ag clusters during electron beam etching, which is revealed through in situ transmission electron microscopy (TEM). In contrast to the Ag2O2 nanocrystals without adsorbates, which display the near-equilibrium shape throughout the etching process, Ag2O2 nanocrystals with Ag surface adsorbates show distinct facet development during etching by electron beam irradiation. Three stages of shape changes are observed: a sphere-to-a cube transformation, side etching of a cuboid, and bottom etching underneath the surface adsorbates. We find that the Ag adsorbates modify the Ag2O2 nanocrystal surface configuration by selectively capping the junction between two neighboring facets. They prevent the edge atoms from being etched away and block the diffusion path of surface atoms. Our findings provide critical insights into the modulatory function of surface adsorbates on the shape control of nanocrystals.

4.
Nano Lett ; 18(8): 5070-5077, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29965777

RESUMEN

Prediction from the dual-phase nature of superionic conductors-both solid and liquid-like-is that mobile ions in the material may experience reversible extraction-reinsertion by an external electric field. However, this type of pseudoelectroelasticity has not been confirmed in situ, and no details on the microscopic mechanism are known. Here, we in situ monitor the pseudoelectroelasticity of monocrystalline Cu2S nanowires (NWs) using transmission electron microscopy (TEM). Specifically, we reveal the atomic scale details including phase transformation, migration and redox reactions of Cu+ ions, nucleation, growth, as well as spontaneous shrinking of Cu protrusion. Caterpillar-diffusion-dominated deformation is confirmed by the high-resolution transmission electron microscopy (HRTEM) observation and  ab initio calculation, which can be driven by either an external electric field or chemical potential difference. The observed spring-like behavior was creatively adopted for electric nanoactuators. Our findings are crucial to elucidate the mechanism of pseudoelectroelasticity and could potentially stimulate in-depth research into electrochemical and nanoelectromechanical systems.

5.
Microsc Microanal ; 29(Supplement_1): 1466-1467, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613809
7.
J Am Chem Soc ; 137(31): 9772-5, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26222800

RESUMEN

We have developed a facile procedure that can create asymmetrical building blocks by uniformly deforming nanospheres into C(∞v) symmetry at low cost and high quality. Concave polystyrene@carbon (PS@C) core-shell nanospheres were produced by a very simple microwave-assisted alcohol thermal treatment of spherical PS@C nanoparticles. The dimensions and ratio of the concave part can be precisely controlled by temperature and solvents. The concavity is created by varying the alcohol-thermal treatment to tune the swelling properties that lead to the mechanical deformation of the PS@C core-shell structure. The driving force is attributed to the significant volume increase that occurs upon polystyrene core swelling with the incorporation of solvent. We propose a mechanism adapted from published models for the depression of soft capsules. An extrapolation from this model predicts that the rigid shell is used to generate a cavity in the unbuckled shell, which is experimentally confirmed. This swelling and deformation route is flexible and should be applicable to other polymeric nanoparticles to produce asymmetrical nanoparticles.

8.
Nat Commun ; 15(1): 858, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286996

RESUMEN

Despite the potentially higher energy density and improved safety of solid-state batteries (SSBs) relative to Li-ion batteries, failure due to Li-filament penetration of the solid electrolyte and subsequent short circuit remains a critical issue. Herein, we show that Li-filament growth is suppressed in solid-electrolyte pellets with a relative density beyond ~95%. Below this threshold value, however, the battery shorts more easily as the density increases due to faster Li-filament growth within the percolating pores in the pellet. The microstructural properties (e.g., pore size, connectivity, porosity, and tortuosity) of [Formula: see text] with various relative densities are quantified using focused ion beam-scanning electron microscopy tomography and permeability tests. Furthermore, modeling results provide details on the Li-filament growth inside pores ranging from 0.2 to 2 µm in size. Our findings improve the understanding of the failure modes of SSBs and provide guidelines for the design of dendrite-free SSBs.

9.
Chem Mater ; 36(6): 2642-2651, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38558919

RESUMEN

All solid-state batteries (SSBs) are considered the most promising path to enabling higher energy-density portable energy, while concurrently improving safety as compared to current liquid electrolyte solutions. However, the desire for high energy necessitates the choice of high-voltage cathodes, such as nickel-rich layered oxides, where degradation phenomena related to oxygen loss and structural densification at the cathode surface are known to significantly compromise the cycle and thermal stability. In this work, we show, for the first time, that even in an SSB, and when protected by an intact amorphous coating, the LiNi0.5Mn0.3Co0.2O2 (NMC532) surface transforms from a layered structure into a rocksalt-like structure after electrochemical cycling. The transformation of the surface structure of the Li3B11O18 (LBO)-coated NMC532 cathode in a thiophosphate-based solid-state cell is characterized by high-resolution complementary electron microscopy techniques and electron energy loss spectroscopy. Ab initio molecular dynamics corroborate facile transport of O2- in the LBO coating and in other typical coating materials. This work identifies that oxygen loss remains a formidable challenge and barrier to long-cycle life high-energy storage, even in SSBs with durable, amorphous cathode coatings, and directs attention to considering oxygen permeability as an important new design criteria for coating materials.

10.
Sci Adv ; 9(17): eabq3285, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37126560

RESUMEN

Revealing the local structure of solid electrolytes (SEs) with electron microscopy is critical for the fundamental understanding of the performance of solid-state batteries (SSBs). However, the intrinsic structural information in the SSB can be misleading if the sample's interactions with the electron beams are not fully understood. In this work, we systematically investigate the effect of electron beams on Al-doped lithium lanthanum zirconium oxide (LLZO) under different imaging conditions. Li metal is observed to grow directly on the clean surface of LLZO. The Li metal growth kinetics and the morphology obtained are found to be heavily influenced by the temperature, accelerating voltage, and electron beam intensity. We prove that the lithium growth is due to the LLZO delithiation activated by a positive charging effect under electron beam emission. Our results deepen the understanding of the electron beam impact on SEs and provide guidance for battery material characterization using electron microscopy.

11.
Science ; 381(6660): 857-861, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616342

RESUMEN

Methane pyrolysis (MP) is a potential technology for CO2-free hydrogen production that generates only solid carbon by-products. However, developing a highly efficient catalyst for stable methane pyrolysis at a moderate temperature has been challenging. We present a new and highly efficient catalyst created by modifying a Ni-Bi liquid alloy with the addition of Mo to produce a ternary NiMo-Bi liquid alloy catalyst (LAC). This catalyst exhibited a considerably low activation energy of 81.2 kilojoules per mole, which enabled MP at temperatures between 450 and 800 Celsius and a hydrogen generation efficiency of 4.05 ml per gram of nickel per minute. At 800 Celsius, the catalyst exhibited 100% H2 selectivity and 120 hours of stability.

12.
Nat Commun ; 13(1): 2211, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468902

RESUMEN

Understanding nanostructure ripening mechanisms is desirable for gaining insight on the growth and potential applications of nanoscale materials. However, the atomic pathways of nanostructure ripening in solution have rarely been observed directly. Here, we report defect-mediated ripening of Cd-CdCl2 core-shell nanoparticles (CSN) revealed by in-situ atomic resolution imaging with liquid cell transmission electron microscopy. We find that ripening is initiated by dissolution of the nanoparticle with an incomplete CdCl2 shell, and that the areas of the Cd core that are exposed to the solution are etched first. The growth of the other nanoparticles is achieved by generating crack defects in the shell, followed by ion diffusion through the cracks. Subsequent healing of crack defects leads to a highly crystalline CSN. The formation and annihilation of crack defects in the CdCl2 shell, accompanied by disordering and crystallization of the shell structure, mediate the ripening of Cd-CdCl2 CSN in the solution.


Asunto(s)
Nanopartículas , Nanoestructuras , Cadmio , Cristalización , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanoestructuras/química
13.
Nat Commun ; 13(1): 3601, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739085

RESUMEN

An understanding of solid-liquid interfaces is of great importance for fundamental research as well as industrial applications. However, it has been very challenging to directly image solid-liquid interfaces with high resolution, thus their structure and properties are often unknown. Here, we report a quasi-liquid phase between metal (In, Sn) nanoparticle surfaces and an aqueous solution observed using liquid cell transmission electron microscopy. Our real-time high-resolution imaging reveals a thin layer of liquid-like materials at the interfaces with the frequent appearance of small In nanoclusters. Such a quasi-liquid phase serves as an intermediate for the mass transport from the metal nanoparticle to the liquid. Density functional theory-molecular dynamics simulations demonstrate that the positive charges of In ions greatly contribute to the stabilization of the quasi-liquid phase on the metal surface.

14.
Nat Commun ; 13(1): 5197, 2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057721

RESUMEN

Metal-organic layers (MOLs) are highly attractive for application in catalysis, separation, sensing and biomedicine, owing to their tunable framework structure. However, it is challenging to obtain comprehensive information about the formation and local structures of MOLs using standard electron microscopy methods due to serious damage under electron beam irradiation. Here, we investigate the growth processes and local structures of MOLs utilizing a combination of liquid-phase transmission electron microscopy, cryogenic electron microscopy and electron ptychography. Our results show a multistep formation process, where precursor clusters first form in solution, then they are complexed with ligands to form non-crystalline solids, followed by the arrangement of the cluster-ligand complex into crystalline sheets, with additional possible growth by the addition of clusters to surface edges. Moreover, high-resolution imaging allows us to identify missing clusters, dislocations, loop and flat surface terminations and ligand connectors in the MOLs. Our observations provide insights into controllable MOL crystal morphology, defect engineering, and surface modification, thus assisting novel MOL design and synthesis.

15.
Sci Adv ; 5(6): eaaw5623, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31187062

RESUMEN

The behavior of individual nanocrystals during superlattice phase transitions can profoundly affect the structural perfection and electronic properties of the resulting superlattices. However, details of nanocrystal morphological changes during superlattice phase transitions are largely unknown due to the lack of direct observation. Here, we report the dynamic deformability of PbSe semiconductor nanocrystals during superlattice phase transitions that are driven by ligand displacement. Real-time high-resolution imaging with liquid-phase transmission electron microscopy reveals that following ligand removal, the individual PbSe nanocrystals experience drastic directional shape deformation when the spacing between nanocrystals reaches 2 to 4 nm. The deformation can be completely recovered when two nanocrystals move apart or it can be retained when they attach. The large deformation, which is responsible for the structural defects in the epitaxially fused nanocrystal superlattice, may arise from internanocrystal dipole-dipole interactions.

16.
ACS Appl Mater Interfaces ; 11(17): 16214-16222, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30951277

RESUMEN

The first-cycle behavior of layered Li-rich oxides, including Li2MnO3 activation and cathode electrolyte interphase (CEI) formation, significantly influences their electrochemical performance. However, the Li2MnO3 activation pathway and the CEI formation process are still controversial. Here, the first-cycle properties of xLi2MnO3·(1- x) LiNi0.3Co0.3Mn0.4O2 ( x = 0, 0.5, 1) cathode materials were studied with an in situ electrochemical quartz crystal microbalance (EQCM). The results demonstrate that a synergistic effect between the layered Li2MnO3 and LiNi0.3Co0.3Mn0.4O2 structures can significantly affect the activation pathway of Li1.2Ni0.12Co0.12Mn0.56O2, leading to an extra-high capacity. It is demonstrated that Li2MnO3 activation in Li-rich materials is dominated by electrochemical decomposition (oxygen redox), which is different from the activation process of pure Li2MnO3 governed by chemical decomposition (Li2O evolution). CEI evolution is closely related to Li+ extraction/insertion. The valence state variation of the metal ions (Ni, Co, Mn) in Li-rich materials can promote CEI formation. This study is of significance for understanding and designing Li-rich cathode-based batteries.

17.
ACS Appl Mater Interfaces ; 10(16): 13499-13508, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29616554

RESUMEN

A composite consisting of cobalt and graphitic porous carbon (Co@GC-PC) is synthesized from bimetallic metal-organic frameworks and employed as the sulfur host for high-performance Li-S batteries. Because of the presence of a large surface area (724 m2 g-1) and an abundance of macro-/mesopores, the Co@GC-PC electrode is able to alleviate the debilitating effect originating from the volume expansion/contraction of sulfur species during the cycling process. Our in situ UV/vis analysis indicates that the existence of Co@GC-PC promotes the adsorption of polysulfides during the discharge process. Density functional theory calculations show a strong interaction between Co and Li2S and a low decomposition barrier of Li2S on Co(111), which is beneficial to the following Li2S oxidation in the charge process. As a result, at 0.2C, the discharge capacity of the S/Co@GC-PC cathode is stabilized at 790 mAh g-1 after 220 cycles, much higher than that of a carbon-based cathode, which delivers a discharge capacity of 188 mAh g-1.

18.
ACS Appl Mater Interfaces ; 8(36): 23739-45, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27556414

RESUMEN

Li3VO4 has been regarded as a new-type anode of lithium-ion batteries in recent years, which has a high theoretical specific capacity of 394 mAh g(-1), a proper potential for Li(+) insertion/deinsertion (∼1 V), and a good rate capacity. However, its low initial Coulombic efficiency, poor conductivity, and poor cycle performance restricts its development. In order to figure out the cause of the low initial Coulombic efficiency of Li3VO4 material, the nanosized Li3VO4 material was synthesized by citric acid-assisted sol-gel method. The lithium storage behaviors of the prepared Li3VO4 material were studied by in-situ XRD and in-situ EIS techniques. In-situ XRD results indicated that there was irreversible phase transformation of Li3VO4 during the initial charging/discharging process. In-situ EIS experiment was performed during the potentiostatic intermittent titration technique (PITT) process to discuss the formation of the solid electrolyte interface (SEI) on the Li3VO4 and the kinetics of lithium-ion diffusion. It is worth pointing out that this is the first time to prove the existence of SEI on Li3VO4 during the initial charging/discharging process by in-situ EIS experiment. It turned out that the irreversible phase transformation and the formation of SEI on Li3VO4 were the two important reasons causing the low initial Coulombic efficiency of Li3VO4 material.

19.
Chem Commun (Camb) ; 50(28): 3713-5, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24577107

RESUMEN

A facile and scalable single-step approach is employed to synthesize a bulk germanium electrode, which consists of nanoscale Ge-grains in ∼5 µm porous powders. This three-dimensional Ge electrode exhibits superior specific capacity (∼1500 mA h g(-1)) and cyclic performance, attributed to its unique lithiation/delithiation processes.

20.
ACS Appl Mater Interfaces ; 5(21): 10782-93, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24090340

RESUMEN

Porous graphitic carbon of high specific surface area of 1416 m(2) g(-1) and high pore volume of 1.11 cm(3) g(-1) is prepared by using commercial CaCO3 nanoparticles as template and sucrose as carbon source followed by 1200 °C high-temperature calcination. Sulfur/porous graphitic carbon composites with ultra high sulfur loading of 88.9 wt % (88.9%S/PC) and lower sulfur loading of 60.8 wt % (60.8%S/PC) are both synthesized by a simple melt-diffusion strategy, and served as cathode of rechargeable lithium-sulfur batteries. In comparison with the 60.8%S/PC, the 88.9%S/PC exhibits higher overall discharge capacity of 649.4 mAh g(-1)(S-C), higher capacity retention of 84.6% and better coulombic efficiency of 97.4% after 50 cycles at a rate of 0.1C, which benefits from its remarkable specific capacity with such a high sulfur loading. Moreover, by using BP2000 to replace the conventional acetylene black conductive agent, the 88.9% S/PC can further improve its overall discharge capacity and high rate property. At a high rate of 4C, it can still deliver an overall discharge capacity of 387.2 mAh g(-1)(S-C). The porous structure, high specific surface area, high pore volume and high electronic conductivity that is originated from increased graphitization of the porous graphitic carbon can provide stable electronic and ionic transfer channel for sulfur/porous graphitic carbon composite with ultra high sulfur loading, and are ascribed to the excellent electrochemical performance of the 88.9%S/PC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA