Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Fluoresc ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602590

RESUMEN

In the present research, novel lanthanide coordination compounds [DyL(PhCOO)(CH3OH)](ClO4)2·(CH3OH)2 (1) were characterized by the compression of 2,6-diformyl-4-methyl-phenol (dmp) and 1,3-diamino-2-propanol using benzoate as the secondary ligand, where L indicates the deprotonated macrocyclic ligand. Through the high structural rigidity driven by the coordination of the macrocyclic ligand formed by condensation in methanol solution and sodium benzoate with Dy(ClO4)3·6H2O, compound 1 exhibits outstanding cyan-emitting fluorescence performance and potential applications as a fluorescent material. Additionally, hyaluronic acid (HA)/ carboxymethyl chitosan (CMCS) hydrogels were prepared with loaded resveratrol metal-organic complexes according to the synthetic chemical approach. In biological study, we evaluated the effect of hydrogels on oxidative stress on human dermal fibroblasts. Examined by molecular docking simulation, the results showed that the binding interactions were from the phenol group, the carboxyl group and also the "-N=" group, indicating Dy metal complex has excellent biological capability.

2.
Acta Pharmacol Sin ; 44(11): 2230-2242, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37402998

RESUMEN

Acute kidney injury (AKI) is associated with high morbidity and mortality. Our previous study has demonstrated that TMEM16A, a Ca2+-activated chloride channel, contributes to renal fibrosis progression in chronic kidney disease. However, whether TMEM16A is involved in AKI is still unknown. In this study, we established cisplatin AKI mice model and found that TMEM16A expression was upregulated in the injured kidney. In vivo knockdown of TMEM16A effectively prevented cisplatin-induced tubular cell apoptosis, inflammation and kidney function loss. Western blot and transmission electron microscopy (TEM) revealed that TMEM16A knockdown inhibited Drp1 translocation from the cytoplasm to mitochondria and prevented mitochondrial fission in tubular cells. Consistently, in cultured HK2 cells, knockdown or inhibition of TMEM16A by shRNA or its specific inhibitor suppressed cisplatin-induced mitochondrial fission and its associated energy dysfunction, ROS accumulation, and cell apoptosis via inhibiting Drp1 activation. Further investigation showed that genetic knockdown or pharmacological inhibition of TMEM16A inhibited cisplatin-induced Drp1 Ser-616 site phosphorylation through ERK1/2 signaling pathway, whereas overexpression of TMEM16A promoted this effect. Treatment with Drp1 or ERK1/2 inhibitor could efficiently prevent cisplatin-induced mitochondrial fission. Collectively, our data suggest that TMEM16A inhibition alleviated cisplatin-induced AKI by preventing tubular cell mitochondrial fission through the ERK1/2 / Drp1 pathway. Inhibition of TMEM16A may be a novel therapeutic strategy for AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratones , Animales , Cisplatino/efectos adversos , Dinámicas Mitocondriales , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Células Cultivadas , Transducción de Señal , Apoptosis
3.
Angew Chem Int Ed Engl ; 62(51): e202313687, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37950324

RESUMEN

Herein, we report an unprecedented skeletal rearrangement reaction of tetrahydro-ß-carbolines enabled by copper-catalyzed single-electron oxidative oxygenation, in which H2 O and O2 act as oxygen sources to generate a unique 2-hydroxyl-3-peroxide indoline intermediate. The synthetic reactivity of 2-hydroxyl-3-peroxide indoline species was demonstrated by a unique multi-step bond cleavage and formation cascade. Using a readily available copper catalyst under open-air conditions, highly important yet synthetically difficult spiro[pyrrolidone-(3,1-benzoxazine)] products were obtained in a single operation. The synthetic utility of this methodology is demonstrated by the efficient synthesis of the natural products donaxanine and chimonamidine, as well as the 3-hydroxyl-pyrroloindoline scaffold, in just one or two steps.

4.
Oncol Lett ; 15(5): 6578-6584, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29725405

RESUMEN

Evidence suggests that peroxisome proliferator activated receptor-γ (PPAR-γ) acts as a tumor suppressor in multiple types of cancer; however, the role of action of PPAR-γ on human epidermoid carcinoma is unclear. The present study investigated the effects of a PPAR-γ agonist, rosiglitazone, on human epidermoid carcinoma cell growth using the A431 cell line. The effects of rosiglitazone on cell viability and proliferation were evaluated with MTS and [3H] thymidine incorporation assays. The effects of rosiglitazone on the cell cycle and apoptosis were analyzed by flow cytometry, and western blotting. It was identified that rosiglitazone inhibited A431 cell proliferation in a dose-dependent manner, increased the proportion of cells in the G1 phase, but did not affect apoptosis. Consistently, there was a significant decrease in the expression of cell proliferation-associated proteins, including cyclin D1, cyclin-dependent kinase (Cdk)2 and Cdk4 in A431 cells treated with rosiglitazone. This decrease was rescued by a selective antagonist of PPAR-γ or specific PPAR-γ small interfering RNAs. However, the ratio of B-cell lymphoma 2 (Bcl-2) to Bcl-2 associated X protein, which is associated with cell apoptosis, was not affected by these treatments. The data of the present study suggest that the PPAR-γ agonist rosiglitazone inhibits human epidermoid carcinoma cell growth through regulating the expression of the cell cycle-associated proteins, and that this effect is independent of apoptosis.

5.
Biomicrofluidics ; 8(5): 052109, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25332736

RESUMEN

We developed a microfluidic device to culture cellular spheroids of controlled sizes and suitable for live cell imaging by selective plane illumination microscopy (SPIM). We cocultured human umbilical vein endothelial cells (HUVECs) within the spheroids formed by hepatocellular carcinoma cells, and studied the distributions of the HUVECs over time. We observed that the migration of HUVECs depended on the size of spheroids. In the spheroids of ∼200 µm diameters, HUVECs migrated outwards to the edges within 48 h; while in the spheroids of ∼250 µm diameters, there was no outward migration of the HUVECs up to 72 h. In addition, we studied the effects of pro-angiogenic factors, namely, vascular endothelial growth factor (VEGF) and fibroblast growth factor (ß-FGF), on the migration of HUVECs in the carcinoma cell spheroid. The outward migration of HUVECs in 200 µm spheroids was hindered by the treatment with VEGF and ß-FGF. Moreover, some of the HUVECs formed hollow lumen within 72 h under VEGF and ß-FGF treatment. The combination of SPIM and microfluidic devices gives high resolution in both spatial and temporal domains. The observation of HUVECs in spheroids provides us insight on tumor vascularization, an ideal disease model for drug screening and fundamental studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA