Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(47): e2304730, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37480188

RESUMEN

High-performance optoelectronic nonvolatile memory is promising candidate for next-generation information memory devices. Here, a floating-gate memory is constructed based on van der Waals heterostructure, which exhibits a large storage window ratio (≈75.5%) and an extremely high on/off ratio (107 ), as well as an ultrafast electrical writing/erasing speed (40 ns). The enhanced performance enables as-fabricated devices to present excellent multilevel data storage, robust retention, and endurance performance. Moreover, stable optical erasing operations can be achieved by illuminating the device with a laser pulse, showcasing outstanding optoelectronic storage performance (optical erasing speed ≈ 2.3 ms). The nonvolatile and high-speed characteristics of these devices hold significant potential for the integration of high-performance nonvolatile memory.

2.
Nanotechnology ; 33(4)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34666325

RESUMEN

Polyaniline, as a kind of conductive polymer with commercial application prospects, is still under researches in its synthesis and applications. In this work, polyaniline was fabricated on flexible substrates including carbon cloths and polyethylene naphthalate byin situelectropolymerization method. The synthesized flexible electrodes were characterized by scanning electron microscopy, High resolution transmission electron microscope, atomic force microscope, Fourier transform infrared, x-ray diffraction, and x-ray photoelectron spectroscopy. Owing to the conductivity and the reversible redox property, the polyaniline/carbon cloth electrodes show excellent properties such as decent supercapacitor performance and good detection capability toward ascorbic acid. As supercapacitors, the electrodes exhibit a specific capacitance as high as 776 F g-1at a current density of 1 A g-1and a long cycle life of 20 000 times in the three-electrode system. As ascorbic acid sensors, the flexible electrodes demonstrate stable response to ascorbic acid in the range of 1-3000µM with an outstanding sensitivity (4228µA mM-1cm-2), low detection limit (1µM), and a fast response time. This work holds promise for high-performance and low-cost flexible electrodes for both supercapacitors and non-enzymatic ascorbic acid sensors, and may inspire inventions of self-powered electrochemical sensor.

3.
Small ; 16(3): e1906185, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31859416

RESUMEN

Metal halide perovskite has attracted enhanced interest for its diverse electronic and optoelectronic applications. However, the fabrication of micro- or nanoscale crystalline perovskite functional devices remains a great challenge due to the fragility, solvent, and heat sensitivity of perovskite crystals. Here, a strategy is proposed to fabricate electronic and optoelectronic devices by directly growing perovskite crystals on microscale metallic structures in liquid phase. The well-contacted perovskite/metal interfaces ensure these heterostructures serve as high-performance field effect transistors (FETs) and excellent photodetector devices. When serving as an FET, the on/off ratio is as large as 106 and the mobility reaches up to ≈2.3 cm2 V-1 s-1 . A photodetector is displayed with high photoconductive switching ratio of ≈106 and short response time of ≈4 ms. Furthermore, the photoconductive response is proved to be band-bending-assisted separation of photoexcited carriers at the Schottky barrier of the silver and p-type perovskites.

4.
Opt Express ; 28(13): 18843-18858, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32672175

RESUMEN

Semiconductor-based surface enhanced Raman scattering (SERS) substrate design has attracted much interest due to the excellent photoelectronic and biochemical properties. The structural change caused by twin in semiconductor will have an influence on improving the Raman signals enhancement based on the chemical mechanism (CM). Here, we demonstrated the twin in semiconductor ZnSe nanowires as an ultrasensitive CM-based SERS platform. The SERS signals of the rhodamine 6G (R6G) and crystal violet (CV) molecules adsorbed on twin-ZnSe nanowires could be easily detected even with an ultralow concentration of 10-11 M and 10-8 M, respectively, and the corresponding enhancement factor (EF) were up to 6.12 × 107 and 3.02 × 105, respectively. In addition, the charge transfer (CT) between the twin-ZnSe nanowires and R6G molecule has been demonstrated theoretically with first-principles calculations based on density-functional theory (DFT). These results demonstrated the proposed ZnSe nanowires with twin as SERS substrate has a broader application in the field of biochemical sensing.

5.
ACS Nano ; 18(35): 24154-24161, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39163167

RESUMEN

Fiber-shaped electrochemical capacitors (FSECs) have garnered substantial attention to emerging portable, flexible, and wearable electronic devices. However, achieving high electronic and ionic conductivity in fiber electrodes while maintaining a large specific surface area is still a challenge for enhancing the capacitance and rapid response of FSECs. Here, we present an electric-field-assisted cold-wall plasma-enhanced chemical vapor (EFCW-PECVD) method for direct growth of vertical graphene (VG) on fiber electrodes, which is incorporated in the FSECs. The customized reactor mainly consists of two radio frequency coils: one for plasma generation and the other for substrate heating. Precise temperature control can be achieved by adjusting the conductive plates and the applied power. With induction heating, only the substrate is heated to above 500 °C within just 5 min, maintaining a low temperature in the gas phase for the growth of VG with a high quality. Using this method, VG was easily grown on metallic fibers. The VG-coated titanium fibers for FSECs exhibit an ultrahigh rate performance and quick ion transport, enabling the conversion of an alternating current signal to a direct current signal and demonstrating outstanding filtering capabilities.

6.
Nanoscale Horiz ; 8(9): 1235-1242, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37409404

RESUMEN

An anomalous Hall effect (AHE) is usually presumed to be absent in pristine graphene due to its diamagnetism. In this work, we report that a gate-tunable Hall resistance Rxy can be obtained in edge-bonded monolayer graphene without an external magnetic field. In a perpendicular magnetic field, Rxy consists of a sum of two terms: one from the ordinary Hall effect and the other from the AHE (RAHE). Plateaus of Rxy ∼ 0.94h/3e2 and RAHE ∼ 0.88h/3e2 have been observed while the longitudinal resistance Rxx decreases at a temperature of 2 K, which are indications of the quantum version of the AHE. At a temperature of 300 K, Rxx shows a positive, giant magnetoresistance of ∼177% and RAHE still has a value of ∼400 Ω. These observations indicate the existence of a long-range ferromagnetic order in pristine graphene, which may lead to new applications in pure carbon-based spintronics.

7.
Nanomaterials (Basel) ; 11(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34443857

RESUMEN

Research on engineering "hotspots" in the field of surface-enhanced Raman scattering (SERS) is at the forefront of contributing to the best sensing indicators. Currently, there is still an urgent need to design a high-strength and large-scale electric field distribution method in order to obtain an ideal SERS sensor. Here, we designed a three-dimensional (3D) Au/Ag nanoparticle (NP)/crossed carbon nanotube film SERS substrate. The proposed structure formed by the simple preparation process can perfectly coordinate the interaction between the SERS substrates, lasers, and molecules. The denser "hotspots" can be induced and then distributed in holes enclosed by Au/AgNPs and the gaps between them. This process was verified by numerical simulations. The experimental results show that the proposed SERS substrate possesses an excellent sensitivity of 10-12 M (rhodamine 6G (R6G)), an enhancement factor of 1.60 × 109, and a good signal reproducibility (the relative standard deviation is ~6.03%). We further use a Au/AgNP/crossed CNT substrate to detect complex solutions composed of toxic molecules, which shows that our proposed SERS substrate has a wide range of application potentials, especially in food safety.

8.
ACS Appl Mater Interfaces ; 12(28): 31776-31782, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32567297

RESUMEN

Memory devices based on lead halide perovskite have attracted great interests because of their unique current-voltage hysteresis. However, current memory devices based on polycrystalline perovskites usually suffer from large intrinsic electronic current and parasitic leakage current due to the existence of grain boundaries, which further leads to high power consumption. Here, a low-power resistance switching random-access memory device is demonstrated by assembling single-crystalline CsPbBr3 on Ag electrodes. The assembled structure serves as a bipolar nonvolatile resistance switching memory device with a low program current (∼10 nA), good endurance, long data retention (>103 S), and big on/off ratio of ∼103. The low program current results in a power of ∼3 × 10-8 W, which is much lower than that of polycrystalline perovskite-based devices (10-1-10-6 W). It is found that the formation and annihilation of Ag and bromide vacancy conductive filaments contribute to the significant resistive switching effect. At a low resistive state, the conductive filaments originate from the accumulation of Br- ions at the drain. Furthermore, the conductive filaments are proved to be a cone shape, shrinking from the drain to the source.

9.
Biosens Bioelectron ; 137: 255-262, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31121462

RESUMEN

A suspended carbon nanotube (SCNT)-based field effective transistor (SCNT-FET), which was fabricated by utilizing the surface tension of liquid silver to suspend a CNT between two Pd electrodes, was proposed for the detection of DNA hybridization. Benefits from the separation between the CNT and the substrates could be observed; namely, the conductivity of a SCNT-FET was much higher (two orders of magnitude) than that of a FET based on an unsuspended CNT and about 50% sensing surface of CNT was freed from substrate. The Slater-Koster tight-binding method was adopted for geometry optimization and transport property calculation of the SCNT bound with DNA. The result showed that the conductance (G = 1/R) of the SCNT decreased in order with the binding of single-stranded DNA (SSDNA, probe DNA) and double-stranded DNA (DSDNA) and that the ability of DSDNA to weaken the conductivity of the SCNT was several times higher than that of SSDNA. SEM and Raman spectroscopy were used to demonstrate that DNA could be bound successfully onto the SCNT using a 1-pyrenebutanoic acid succinimidyl ester (PBASE) as a linkage. Ultra-high sensitivity detection of DNA [with a limit of detection (LOD) as low as 10 aM] was obtained using such an SCNT-FET, which showed a lower value than that of a previously reported FET DNA biosensor whose sensing materials were in direct contact with the substrate.


Asunto(s)
Técnicas Biosensibles , ADN/aislamiento & purificación , Hibridación de Ácido Nucleico , ADN/química , Sondas de ADN/química , ADN de Cadena Simple/química , Conductividad Eléctrica , Límite de Detección , Nanotubos de Carbono/química , Espectrometría Raman , Transistores Electrónicos
10.
RSC Adv ; 9(1): 429-434, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-35521594

RESUMEN

Carbon nanotubes are considered as great candidates for atomic force microscopy (AFM) probes because of their high aspect ratio and outstanding mechanical properties. In this work, we report that a conical AFM probe can be fabricated with arc discharge prepared multiwalled carbon nanotubes (MWCNTs) with an individual MWCNT at the apex by dielectrophoresis. The amplitude-displacement curve of the conical MWCNT probe demonstrates that this structure can remain stable until the force exerted on it increases to 14.0 ± 1.5 nN (nanonewton). Meanwhile, the conical MWCNT probes are able to resolve complex structure with high aspect ratio compared to commercial AFM probes, suggesting great potential for various AFM applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA