Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Biol Rep ; 50(1): 11-18, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36282461

RESUMEN

BACKGROUND: Chickpea (Cicer arietinum L.), a major nutritional source cultivated worldwide, is vulnerable to several abiotic and biotic stresses, including different types of soil-borne pathogens like Fusarium oxysporum f. sp. ciceri, which causes root rot disease and severely affects productivity. METHODS AND RESULTS: In this study, putative transgenic plants were obtained with the Radish defensin (Rs-AFP2) gene through Agrobacterium tumefaciens mediated transformation using the embryo axis explants. Transgenes were confirmed in 18 putative transgenic plants with PCR-specific primers for nptII and Rs-AFP2 genes. Twelve transgenic plants were established successfully under greenhouse conditions. The T0 plants were allowed for self-pollination to obtain T1 seeds. The T1 plants, selected for Fusarium wilt assay using Fusarium oxysporum f. sp. Cicero, showed different resistance levels, from moderate to high levels in comparison to control plants (wild-type) which exhibited severe wilt symptoms. CONCLUSION: Our results suggest the application of Radish defensins (RsAFP1/RsAFP2 genes) for improving pathogen resistance in chickpea.


Asunto(s)
Cicer , Fusarium , Raphanus , Cicer/genética , Cicer/metabolismo , Fusarium/genética , Raphanus/genética , Plantas Modificadas Genéticamente/genética , Defensinas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
Physiol Plant ; 171(4): 739-755, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33215734

RESUMEN

The sessile nature of plants' life is endowed with a highly evolved defense system to adapt and survive under environmental extremes. To combat such stresses, plants have developed complex and well-coordinated molecular and metabolic networks encompassing genes, metabolites, and acclimation responses. These modulate growth, photosynthesis, osmotic maintenance, and carbohydrate homeostasis. Under a given stress condition, sugars act as key players in stress perception, signaling, and are a regulatory hub for stress-mediated gene expression ensuring responses of osmotic adjustment, scavenging of reactive oxygen species, and maintaining the cellular energy status through carbon partitioning. Several sugar transporters are known to regulate carbohydrate partitioning and key signal transduction steps involved in the perception of biotic and abiotic stresses. Sugar transporters such as SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEETs), SUCROSE TRANSPORTERS (SUTs), and MONOSACCHARIDE TRANSPORTERS (MSTs) are involved in sugar loading and unloading as well as long-distance transport (source to sink) besides orchestrating oxidative and osmotic stress tolerance. It is thus necessary to understand the structure-function relationship of these sugar transporters to fine-tune the abiotic stress-modulated responses. Advances in genomics have unraveled many sugars signaling components playing a key role in cross-talk in abiotic stress pathways. An integrated omics approach may aid in the identification and characterization of sugar transporters that could become targets for developing stress tolerance plants to mitigate climate change effects and improve crop yield. In this review, we have presented an up-to-date analysis of the sugar homeostasis under abiotic stresses as well as describe the structure and functions of sugar transporters under abiotic stresses.


Asunto(s)
Estrés Fisiológico , Azúcares , Regulación de la Expresión Génica de las Plantas , Homeostasis , Proteínas de Transporte de Membrana/metabolismo , Plantas/genética , Plantas/metabolismo
3.
BMC Plant Biol ; 19(1): 26, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30646861

RESUMEN

BACKGROUND: Soybean (Glycine max L. Merril) crop is major source of edible oil and protein for human and animals besides its various industrial uses including biofuels. Phytoplasma induced floral bud distortion syndrome (FBD), also known as witches' broom syndrome (WBS) has been one of the major biotic stresses adversely affecting its productivity. Transcriptomic approach can be used for knowledge discovery of this disease manifestation by morpho-physiological key pathways. RESULTS: We report transcriptomic study using Illumina HiSeq NGS data of FBD in soybean, revealing 17,454 differentially expressed genes, 5561 transcription factors, 139 pathways and 176,029 genic region putative markers single sequence repeats, single nucleotide polymorphism and Insertion Deletion. Roles of PmbA, Zn-dependent protease, SAP family and auxin responsive system are described revealing mechanism of flower bud distortion having abnormalities in pollen, stigma development. Validation of 10 randomly selected genes was done by qPCR. Our findings describe the basic mechanism of FBD disease, right from sensing of phytoplasma infection by host plant triggering molecular signalling leading to mobilization of carbohydrate and protein, phyllody, abnormal pollen development, improved colonization of insect in host plants to spread the disease. Study reveals how phytoplasma hijacks metabolic machinery of soybean manifesting FBD. CONCLUSIONS: This is the first report of transcriptomic signature of FBD or WBS disease of soybean revealing morphological and metabolic changes which attracts insect for spread of disease. All the genic region putative markers may be used as genomic resource for variety improvement and new agro-chemical development for disease control to enhance soybean productivity.


Asunto(s)
Glycine max/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Transcriptoma/genética
4.
Indian J Microbiol ; 59(4): 436-444, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31762506

RESUMEN

Mutanases are enzymes that have the ability to cleave α-1,3 linkages in glucan polymer. In the present investigation, mutanase enzyme purified from the culture filtrate of Paracoccus mutanolyticus was evaluated for Streptococcal biofilm degradation and antimicrobial activity against pathogenic fungi along with enzyme kinetics, activation energies, pH and thermal stability. Biochemical and molecular characterization depicted that the enzyme showed optimum activity at pH 5.5 and at 50 °C. It displayed Michaelis-Menten behaviour with a Km of 1.263 ± 0.03 (mg/ml), Vmax of 2.712 ± 0.15 U/mg protein. Thermal stability studies denoted that it required 55.46 and 135.43 kJ mol-1 of energy for activation and deactivation in the temperature range of 30-50 °C and 50-70 °C respectively. Mutanase activity was enhanced ~ 50 and 75% by Fe2+ and EDTA, respectively, while presence of Hg2+ and Mn2+ inhibit > 90% of its activity. This enzyme has a molecular mass of 138 kDa and showed monomeric nature by Zymography. Scanning electron microscopy analysis of mutanase treated Streptococcal cells revealed cleavage of linkages among the cells and complete separation of cells, indicating its potential in dentistry as an anticaries agent in the prophylaxis and therapy of dental caries. In addition, antifungal activity of mutanase against Colletotrichum capsici MTCC 10147 and Cladosporium cladosporioide MTCC 7371 revealed that the enzyme has potential towards biological control of phytopathogens which could be used as an alternative bio-control agent against chemical pesticides in the future.

5.
Crit Rev Biotechnol ; 36(3): 389-98, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25430890

RESUMEN

Abiotic stress has become a challenge to food security due to occurrences of climate change and environmental degradation. Plants initiate molecular, cellular and physiological changes to respond and adapt to various types of abiotic stress. Understanding of plant response mechanisms will aid in strategies aimed at improving stress tolerance in crop plants. One of the most common and early symptoms associated with these stresses is the disturbance in plant-water homeostasis, which is regulated by a group of proteins called "aquaporins". Aquaporins constitute a small family of proteins which are classified further on the basis of their localization, such as plasma membrane intrinsic proteins, tonoplast intrinsic proteins, nodulin26-like intrinsic proteins (initially identified in symbiosomes of legumes but also found in the plasma membrane and endoplasmic reticulum), small basic intrinsic proteins localized in ER (endoplasmic reticulum) and X intrinsic proteins present in plasma membrane. Apart from water, aquaporins are also known to transport CO2, H2O2, urea, ammonia, silicic acid, arsenite and wide range of small uncharged solutes. Besides, aquaporins also function to modulate abiotic stress-induced signaling. Such kind of versatile functions has made aquaporins a suitable candidate for development of transgenic plants with increased tolerance toward different abiotic stress. Toward this endeavor, the present review describes the versatile functions of aquaporins in water uptake, nutrient balancing, long-distance signal transfer, nutrient/heavy metal acquisition and seed development. Various functional genomic studies showing the potential of specific aquaporin isoforms for enhancing plant abiotic stress tolerance are summarized and future research directions are given to design stress-tolerant crops.


Asunto(s)
Acuaporinas , Plantas Modificadas Genéticamente , Estrés Fisiológico , Proteínas de Plantas
7.
Carbohydr Res ; 545: 109271, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39270442

RESUMEN

Breast cancer presents a significant global health challenge, driving the development of novel treatment strategies for therapeutic interventions. Nanotechnology has emerged as a promising avenue for addressing this challenge, with Chitosan (CS) nanoparticles receiving prominence due to their unique characteristics and multitude of potential applications. This review provides a comprehensive overview of the role of Chitosan nanoparticles in breast cancer therapy. The review begins by emphasizing the prevalence and importance of breast cancer as a major health issue, underscoring the necessity for effective treatments. It then delves into the application of Chitosan nanoparticles in breast cancer therapy. One key aspect discussed is their role as carriers for anticancer drugs, enabling targeted delivery and improved cellular uptake. Furthermore, the review explores modified Chitosan nanoparticles and strategies for enhancing their efficacy and specificity in breast cancer treatment. It also examines Chitosan conjugates and hybrids, which offer innovative approaches for combination therapy. Additionally, metal and magnetic Chitosan nanoparticles are discussed spanning their capacity to assist in imaging, hyperthermia, as well as targeted drug delivery. In conclusion, the review summarizes the current research landscape regarding Chitosan nanoparticles for breast cancer therapy and offers insights into future directions. Overall, the review highlights the versatility, potential benefits, and future prospects of Chitosan nanoparticles in combating breast cancer.

8.
J Agric Food Chem ; 71(46): 17510-17527, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37943146

RESUMEN

As a consequence of global climate change, acute water deficit conditions, soil salinity, and high temperature have been on the rise in their magnitude and frequency, which have been found to impact plant growth and development negatively. However, recent evidence suggests that many fruit plants that face moderate abiotic stresses can result in beneficial effects on the postharvest storage characters of the fruits. Salinity, drought, and high temperature conditions stimulate the synthesis of abscisic acid (ABA), and secondary metabolites, which are vital for fruit quality. The secondary metabolites like phenolic acids and anthocyanins that accumulate under abiotic stress conditions have antioxidant activity, and therefore, such fruits have health benefits too. It has been noticed that fruits accumulate more sugar and anthocyanins owing to upregulation of phenylpropanoid pathway enzymes. The novel information that has been generated thus far indicates that the growth environment during fruit development influences the quality components of the fruits. But the quality depends on the trade-offs between productivity, plant defense, and the frequency, duration, and intensity of stress. In this review, we capture the current knowledge of the irrigation practices for optimizing fruit production in arid and semiarid regions and enhancement in the quality of fruit with the application of exogenous ABA and identify gaps that exist in our understanding of fruit quality under abiotic stress conditions.


Asunto(s)
Antocianinas , Frutas , Antocianinas/metabolismo , Frutas/metabolismo , Cambio Climático , Ácido Abscísico/metabolismo , Carbohidratos
9.
Environ Sci Pollut Res Int ; 29(53): 80062-80087, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35641741

RESUMEN

ß-Glucan is an eco-friendly, biodegradable, and economical biopolymer with important roles for acquiring adaptations to mitigate climate change in crop plants. ß-Glucan plays a crucial role in the activation of functional plant innate immune system by triggering the downward signaling cascade/s, resulting in the accumulation of different pathogenesis-related proteins (PR-proteins), reactive oxygen species (ROS), antioxidant defense enzymes, Ca2+-influx as well as activation of mitogen-activated protein kinase (MAPK) pathway. Recent experimental studies have shown that ß-glucan recognition is mediated by co-receptor LysMPRR (lysin motif pattern recognition receptor)-CERK1 (chitin elicitor receptor kinase 1), LYK4, and LYK5 (LysM-containing receptor-like kinase), as well as different receptor systems in plants that could be plant species-specific and/or age and/or tissue-dependent. Transgenic overexpression of ß-glucanase, chitinase, and/or in combination with other PR-proteins like cationic peroxidase, AP24,thaumatin-likeprotein 1 (TLP-1) has also been achieved for improving plant disease resistance in crop plants, but the transgenic methods have some ethical and environmental concerns. In this regard, elicitation of plant immunity using biopolymer like ß-glucan and chitosan offers an economical, safe, and publicly acceptable method. The ß-glucan and chitosan nanocomposites have proven to be useful for the activation of plant defense pathways and to enhance plant response/systemic acquired resistance (SAR) against broad types of plant pathogens and mitigating multiple stresses under the changing climate conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Quitinasas , Quitosano , Nanocompuestos , beta-Glucanos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , beta-Glucanos/metabolismo , Quitosano/metabolismo , Antioxidantes/metabolismo , Proteínas Serina-Treonina Quinasas , Enfermedades de las Plantas , Quitina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Agricultura , Quitinasas/metabolismo , Peroxidasas/metabolismo
10.
Int J Radiat Biol ; 98(7): 1261-1276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34982642

RESUMEN

PURPOSE: Sugarcane is an important cash crop and is affected by soil salinity. CoM 0265, a moderately salt-tolerant variety grown in the Maharashtra region (India), has low sugar content. The present study was aimed to employ gamma ray induced in vitro mutagenesis with repeated and step-wise selection in sugarcane for the isolation and physio-biochemical profiling of the selected salt-tolerant mutants for improved agronomic performance and sugar content. MATERIALS AND METHODS: Embryogenic callus culture of CoM 0265 variety was subjected to different doses of gamma radiation (10, 20, 30, 40, 50, and 60 Gy) followed by selection on NaCl containing media (50, 100, 150, 200, and 250 mM NaCl). The regenerated plantlets were hardened and selected based on ground nursery field trial on normal soil and saline field trial, in augmented block design for the selected mutant clones. Different physio-biochemical changes and activity of antioxidant enzymes were analyzed in the salt selected in vitro cultures and field-grown mutant clones. RESULTS: Dose optimization showed 40 Gy as the LD50 for gamma radiation and 150 mM NaCl as the dose for in vitro selection experiments. The selected mutant clones showed higher tissue water content (TWC), chlorophyll, and lower sodium content indicative of tolerance to salt stress. Catalase and peroxidase enzyme activities in the top visible dewlap (TVD) of the putative mutant clones were significantly higher than the control. The average yield and sucrose percent of the selected mutant clones were significantly higher than control checks in the saline field trial. Mutant clones M8457 and M8721 exhibited improved yield and commercial cane sugar over the parent control check varieties under saline field conditions. Catalase activity was strongly associated with TWC (r = 0.34) and chlorophyll content (r = 0.41) while it was negatively correlated with sodium ion content (r = -0.38). Peroxidase activity in TVD also showed a significant positive correlation with chlorophyll content (r = 0.42) and a negative correlation with sodium ion content (r=-0.39). The improvement in yield and CCS (t/ha) was strongly associated with the lower sodium ion content of the mutant clones (r=-0.54 and -0.53, respectively). CONCLUSIONS: Gamma ray induced mutants were isolated for improved sucrose and high yield in sugarcane var. CoM 0265. The results suggest that gamma radiation induced mutations result in physiological and metabolomic alterations for better growth and adaptation under in vitro and field stress conditions in sugarcane. The improved mutants can be further useful for commercial cultivation in saline areas.


Asunto(s)
Saccharum , Catalasa/genética , Clorofila , India , Mutagénesis , Saccharum/química , Saccharum/genética , Sodio , Cloruro de Sodio/farmacología , Suelo , Sacarosa , Azúcares , Agua
11.
Plants (Basel) ; 11(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432897

RESUMEN

In vitro mutagenesis offers a feasible approach for developing new orchid cultivars through genetic manipulation. In the present study, protocorm-like bodies (PLBs) were exposed to gamma rays (10, 20, 40, 60, 80 Gy) to study in vitro growth responses and induction of mutants in Dendrobium 'Emma White'. Both proliferation and regeneration of PLBs decreased progressively with increasing doses, except for a significantly enhanced growth response at 10 Gy. The optimal dose of gamma radiation for mutagenesis was found in the range 10 to 25 Gy based on the growth reduction curve. Analysis using a high-throughput cell analyzer revealed a significant reduction in nuclear DNA content at > 40 Gy doses. At 10 Gy treatment, the growth attributes, such as root length, plant height and leaf number, were significantly increased by 36%, 26% and 20%, respectively, compared to the control. This increase was significant over other tested doses as well. Testing of random amplified polymorphic DNA markers revealed the presence of detectable polymorphism among gamma mutant plantlets with a polymorphism information content value at 0.41. The gamma-ray-induced earliness in flower development was observed within 294 days post ex vitro growth of 10 Gy mutant compared to the control plants flowered after 959 days. Our results highlight the significance of gamma radiation in inducing enhanced growth, morphological variations and early floral initiation in Dendrobium, providing a basic framework for mutation breeding and improvement of orchids.

12.
Front Plant Sci ; 13: 952732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226297

RESUMEN

Systematic genome-wide analysis of Sorghum bicolor revealed the identification of a total of 48 homologous genes comprising 21 proline-rich proteins (PRPs) and 27 hybrid proline-rich proteins (HyPRPs). Comprehensive scrutiny of these gene homologs was conducted for gene structure, phylogenetic investigations, chromosome mapping, and subcellular localization of proteins. Promoter analysis uncovered the regions rich with phosphorous- (BIHD), ammonium-, sulfur-responsive (SURE), and iron starvation-responsive (IRO2) along with biotic, abiotic, and development-specific cis-elements. Further, PRPs exhibit more methylation and acetylation sites in comparison with HyPRPs. miRNAs have been predicted which might play a role in cleavage and translation inhibition. Several of the SbPRP genes were stimulated in a tissue-specific manner under drought, salt, heat, and cold stresses. Additionally, exposure of plants to abscisic acid (ABA) and zinc (Zn) also triggered PRP genes in a tissue-dependent way. Among them, SbPRP17 has been found upregulated markedly in all tissues irrespective of the stress imposed. The expressions of SbHyPRPs, especially SbHyPRP2, SbHyPRP6, and SbHyPRP17 were activated under all stresses in all three tissues. On the other hand, SbHyPRP8 (root only) and SbHyPRP12 (all three tissues) were highly responsive to cold stress and ABA while SbHyPRP26 was induced by drought and Zn in the stem. Taken together, this study indicates the critical roles that SbPRPs and SbHyPRPs play during diverse abiotic stress conditions and notably the plausible roles that these genes play upon exposure to zinc, the crucial micronutrient in plants.

13.
ACS Omega ; 6(50): 34812-34822, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34963964

RESUMEN

Chitosan (CSN) and its derivatives are being exploited for their potential role in agriculture in mitigating environmental stress factors. The present study was aimed to enhance the synthesis of chitosan (CSN)-based silver nanoparticles (Ag NPs) using γ-irradiated chitosan (IR-CSN) and to study the antimicrobial activity of IR-CSN-Ag NPs. The chitosan-silver nanocomposites (CSN-Ag NPs) were prepared by employing the green synthesis method using normal chitosan (high molecular weight (MW), NL-CSN) and oligochitosans (low MW, IR-CSN). The latter was derived by irradiation with γ rays (60Co) at 100 kGy dose to obtain a lower MW (approximately 25 kDa). NL-CSN and IR-CSN (0.0-2.5% w/v) were amalgamated with different concentrations of silver nitrate (0.0-2.5% w/v) and vice versa. The UV-visible spectra displayed a single peak in the range of 419-423 nm, which is the characteristic surface plasmon resonance (SPR) for Ag NPs. The physicochemical properties were assessed using different methods such as transmission electron microscopy (TEM), Fourier transform infrared (FTIR), zetasizer, elemental (CHNS) analysis, etc. The degree of Ag NP synthesis was more in IR-CSN than NL-CSN. The in vitro disc diffusion assay with IR-CSN-Ag NPs exhibited a significantly higher antimicrobial activity against Escherichia coli. Further evaluation of the antifungal activity of IR-CSN and Ag NPs showed a synergistic effect against chickpea wilt (Fusarium oxysporum f. sp. ciceris). The study has provided a novel approach for the improved synthesis of CSN-Ag nanoparticle composites using γ-irradiated chitosan. This study also opens up new options for the development and deployment of γ-irradiated chitosan-silver nanocomposites for the control of phytopathogens in sustainable agriculture.

14.
Plant Physiol Biochem ; 169: 291-310, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34826705

RESUMEN

Food security relies on plant productivity and plant's resilience to climate change driven environmental stresses. Plants employ diverse adaptive mechanisms of stress-signalling pathways, antioxidant defense, osmotic adjustment, nutrient homeostasis and phytohormones. Over the last few decades, silicon has emerged as a beneficial element for enhancing plant growth productivity. Silicon ameliorates biotic and abiotic stress conditions by regulating the physiological, biochemical and molecular responses. Si-uptake and transport are facilitated by specialized Si-transporters (Lsi1, Lsi2, Lsi3, and Lsi6) and, the differential root anatomy has been shown to reflect in the varying Si-uptake in monocot and dicot plants. Silicon mediates a number of plant processes including osmotic, ionic stress responses, metabolic processes, stomatal physiology, phytohormones, nutrients and source-sink relationship. Further studies on the transcriptional and post-transcriptional regulation of the Si transporter genes are required for better uptake and transport in spatial mode and under different stress conditions. In this article, we present an account of the availability, uptake, Si transporters and, the role of Silicon to alleviate environmental stress and improve plant productivity.


Asunto(s)
Plantas , Silicio , Transporte Biológico , Desarrollo de la Planta , Estrés Fisiológico
15.
J Biotechnol ; 332: 114-125, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33864842

RESUMEN

Protein kinases are involved in the transfer of phosphate group to serine, threonine, and tyrosine residues of a target protein. With No Lysine (WNK) kinase is a member of the serine/threonine protein kinase family, which has conserved catalytic lysine (K) residue in subdomain I instead of being in subdomain II.The WNKs family members in plants are stress inducible and have been validated for their role in abiotic stress tolerance. In the present study, we have characterized Arabidopsis overexpressed lines of OsWNK9 regulated by the constitutive promoter under arsenite stress. Moreover, we have performed In silico expression analysis of OsWNK9 under nutrient deficiency and heavy metal stress. Three independent transgenic Arabidopsis (OsWNK9-OX T11, T12,andT13) lines showed tolerance to arsenite stress compared to wild-type (WT) plants. Under arsenite stress, transgenic lines T11, T12 and T13 showed 56.46, 57.8 and 51.66 % increased biomass respectively, as compared to WT plants. All three ArabidopsisOsWNK9-OX lines exhibited higher proline content, increased antioxidant enzyme activities and lower hydrogen peroxide levels under arsenite stress. Besides, the total antioxidant capacity in terms of DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging percentage was increased by 8-15 % in three independent OsWNK9-OX lines compared with those of WT plants. Protein-protein interaction analysis of OsWNK9 predicted interaction partners with protein kinase and oxidative stress-responsive protein. Co-expression analysis of OsWNK9 in phosphate deficiency and arsenate stress condition predicted various proteins including membrane transporter and transcription factors. Taken together, our results, for the first time, provide evidence that OsWNK9 could positively mediate arsenite stress tolerance in plants.


Asunto(s)
Arabidopsis , Arsenitos , Oryza , Arabidopsis/genética , Arsenitos/toxicidad , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Plantas Modificadas Genéticamente/genética
16.
Carbohydr Res ; 503: 108297, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33813321

RESUMEN

Glucans are the most abundant natural polysaccharides across the living kingdom with tremendous biological activities. Now a days, α-D-glucans are gaining importance as a prebiotics, nutraceuticals, immunostimulants, antiproliferative agents and biodegradable polymers in pharmaceutical and cosmetic sectors. A wide variety of bioresources including bacteria, fungi, lichens, algae, plants and animals produce α-D-glucans either as an exopolysaccharide (EPS) or a cell wall component or an energy storage polymer. The α-D-glucans exhibit great structural and functional diversity as the type of linkage and percentage of branching dictate the functional properties of glucans. Among the different linkages, bioactivities are greatly confined to the α-D-(1 â†’ 3) linkages whereas starch and other polymers consisting of α-D-(1 â†’ 4) (1 â†’ 6) linkages are specific for food and pharmaceutical applications. However, the bioactivities of the α-D-(1 â†’ 3) glucans in native form is limited mainly due to their hydrophobic nature. Hence several derivatization techniques have been developed to improve the bioavailability as well as bioactive features such as antiviral, antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antitumor properties. Though, several reports have presented about α-D-glucans, still there is an ambiguity in terms of their structure among different natural sources and moreover no comprehensive information was available on their derivatization techniques and application potential. Therefore, the present review summarizes distinct description on diverse sources, type of linkages, derivatization techniques as well as the application potential of the native and modified α-D-glucans.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Glucanos/farmacología , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Antiinflamatorios/química , Antiinflamatorios/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Conformación de Carbohidratos , Glucanos/química , Glucanos/metabolismo , Humanos
17.
3 Biotech ; 9(3): 91, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30800602

RESUMEN

Chloride and sodium constitute as the major ions in most saline soils, contributing to salt-induced damage in plants. Research on salt tolerance has mostly concentrated on the sodium toxicity; however, chloride toxicity also needs to be considered to understand the physiological, biochemical, and metabolite changes under individual and additive salts. In this study, we investigated the effect of individual Na+ and/or Cl- ions (equimolar 100 mM NaCl, Na+ and Cl- salts) using in vitro cultures of four soybean genotypes with contrasting salt tolerance. In general, all the treatments significantly induced antioxidant enzymes activities such as catalase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase, and superoxide dismutase and osmolytes including proline, glycine betaine, and total soluble sugar (TSS). Both individual (Na+, Cl-) and additive (NaCl) stresses induced more pronounced activation of antioxidant enzyme machinery and osmolytes accumulation in the tolerant genotypes (MAUS-47 and Bragg). The sensitive genotypes (Gujosoya-2 and SL-295) showed higher accumulation of Na+ and Cl-, while the tolerant genotypes were found to maintain a low Na+/K+ and high Ca2+ level in combination with enhanced antioxidant defense and osmotic adjustment. Gas chromatography-mass spectrometry (GC-MS)-based metabolomic profiling depicted the association of certain metabolites under individualistic and additive salt effects. The genotype-specific metabolic changes indicated probable involvement of azetidine, 2-furanmethanol, 1,4-dioxin, 3-fluorothiophene, decanoic acid and 2-propenoic acid methyl ester in salt-tolerance mechanism of soybean.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA