Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Qual ; 38(4): 1458-65, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19465721

RESUMEN

Explosives in soils can present environmental problems for military installations. Fine, mobile particles represent the most reactive fraction of the soil and, therefore, are expected to adsorb explosives and potentially facilitate their transport. The objective of this study was to determine the relative significance of phyllosilicate clay, organic matter, and two forms of extractable iron in adsorption of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by the colloidal water-dispersible clay (WDC) fraction of the soil. The WDC fraction of two mineral and one organic soil was separated and then treated to remove organic carbon (OC) and several forms of iron (Fe(o), oxalate extractable, and Fe(d), dithionite-citrate extractable). Adsorption coefficients were determined for whole soils, untreated, and treated WDC. For mineral soils, adsorption of TNT and RDX on the WDC was greater than on the whole soil. The presence of OC increased explosives sorption by WDC. When OC was removed, iron interfered with TNT sorption. In the presence of OC, removal of Fe(o) decreased RDX adsorption and increased TNT adsorption indicating different adsorption mechanisms. Organic carbon was a more significant indicator of explosives adsorption by WDC than clays or iron oxides and hydroxides. Therefore, OC is the most likely medium for facilitated transport of TNT and RDX.


Asunto(s)
Silicatos de Aluminio/química , Carbono/química , Sustancias Explosivas/química , Hierro/química , Adsorción , Arcilla
2.
Mar Pollut Bull ; 54(8): 1262-6, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17512956

RESUMEN

Process descriptors were determined for picric acid, TNT, and the TNT-related compounds 2,4DNT, 2,6DNT, 2ADNT, 4ADNT, 2,4DANT, 2,6DANT, TNB and DNB in marine sediment slurries. Three marine sediments of various physical characteristics (particle size ranging from 15 to >90% fines and total organic carbon ranging from <0.10 to 3.60%) were kept in suspension with 20ppt saline water. Concentrations of TNT and its related compounds decreased immediately upon contact with the marine sediment slurries, with aqueous concentrations slowly declining throughout the remaining test period. Sediment-water partition coefficients could not be determined for these compounds since solution phase concentrations were unstable. Kinetic rates and half-lives were influenced by the sediment properties, with the finer grained, higher organic carbon sediment being the most reactive. Aqueous concentrations of picric acid were very stable, demonstrating little partitioning to the sediments. Degradation to picramic acid was minimal, exhibiting concentrations at or just above the detection limit.


Asunto(s)
Sedimentos Geológicos/química , Picratos/metabolismo , Trinitrobencenos/metabolismo , Trinitrotolueno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Picratos/análisis , Análisis de Regresión , Factores de Tiempo , Trinitrobencenos/análisis , Trinitrotolueno/análisis , Contaminantes Químicos del Agua/análisis
3.
Chemosphere ; 65(8): 1405-13, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16750241

RESUMEN

We sampled residues from high-order and low-order blow-in-place detonations of mortars and projectiles filled with Composition B (Comp B), a TNT and RDX mixture. Our goals were to (1) characterize the types of explosive particles, (2) estimate the explosive 'footprint' for different munitions, and (3) estimate the mass of Comp B remaining after each detonation. The aerial deposition of Comp B particles helps estimate how large of an area is contaminated by a low-order detonation and how best to sample residue resulting from different rounds. We found that the high-order detonations deposited microgram to milligram quantities whereas the low-order detonations deposited gram quantities of Comp B. For the high-order detonations the concentration of Comp B in the residue decreased as a function of distance from the blast. The low-order tests scattered centimeter-sized chunks and millimeter-sized or smaller particles of Comp B. The chunks were randomly scattered whereas the number of millimeter-sized particles decreased with distance from the detonation. For both high- and low-order detonations we found that the smaller munitions deposited less Comp B than the larger munitions and deposited it closer to the detonation point.


Asunto(s)
Tamaño de la Partícula , Cristalización , Maryland , Microscopía Electrónica de Rastreo
4.
Chemosphere ; 63(8): 1280-90, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16352328

RESUMEN

Environmental investigations have been conducted at 23 military firing ranges in the United States and Canada. The specific training facilities most frequently evaluated were hand grenade, antitank rocket, and artillery ranges. Energetic compounds (explosives and propellants) were determined and linked to the type of munition used and the major mechanisms of deposition.


Asunto(s)
Armas de Fuego , Contaminantes del Suelo/análisis , Compuestos de Anilina/análisis , Azocinas/análisis , Derivados del Benceno/análisis , Canadá , Monitoreo del Ambiente , Compuestos Heterocíclicos con 1 Anillo/análisis , Nitroglicerina/análisis , Triazinas/análisis , Estados Unidos
5.
J Environ Qual ; 35(6): 2043-54, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17071873

RESUMEN

Low-order detonations and blow-in-place procedures on military training ranges can result in residual solid explosive formulations to serve as distributed point sources for ground water contamination. This study was conducted to determine if distribution coefficients from batch studies and transport parameters of pure compounds in solution adequately describe explosive transport where compounds are present as solid particles in formulations. Saturated column transport experiments were conducted with 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and the explosive formulation, Composition B (Comp B) (59.5 +/- 2.0% RDX, 39.5 +/- 2.3% TNT, and 1% wax) in solid and dissolved forms. The two soils used were Plymouth loamy sand (mesic, coated Typic Quartzipsamments) from Camp Edwards, MA and Adler silt loam (coarse-silty, mixed, superactive, thermic Fluvaquentic Eutrudepts) from Vicksburg, MS. Interrupted flow experiments were used to determine if explosives were at equilibrium distribution between soil and solution phases. The HYDRUS-1D code was used to determine fate and transport parameters. Results indicated that sorption of high explosives was rate limited. The behavior of dissolved Comp B was similar to the behavior of pure TNT and RDX. Behavior of solid Comp B was controlled by dissolution that depended on physical properties of the Comp B sample. Adsorption coefficients determined by HYDRUS-1D were different from those determined in batch tests for the same soils. Use of parameters specific to formulations will improve fate and transport predictions.


Asunto(s)
Sustancias para la Guerra Química/química , Explosiones , Contaminantes del Suelo/química , Triazinas/química , Trinitrotolueno/química , Adsorción , Sustancias para la Guerra Química/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis , Factores de Tiempo , Triazinas/análisis , Trinitrotolueno/análisis
6.
Chemosphere ; 77(4): 597-603, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19729186

RESUMEN

Live-fire training exercises can result in particulate propellant contamination on military training ranges and can potentially contaminate ground water. This study was conducted to evaluate dissolution of the 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) from the propellant formulation, M1 (87.6% nitrocellulose, 7.3% 2,4-DNT, 0.57% 2,6-DNT, 1.06% diphenylamine, 3.48% dibutyl phthalate) and their subsequent transport in soil. Batch dissolution studies were followed by saturated column transport experiments. Neat, dissolved 2,4-DNT, and M1 in solid and dissolved forms were used as influent to columns filled with Plymouth loamy sand (mesic, coated Typic Quartzipsamments) from Camp Edwards, MA. Dissolution rates and other fate and transport parameters were determined using the HYDRUS-1D code. M1 dissolution was limited by DNT diffusion from the interior of the pellet, resulting in an exponential decrease in dissolution rate with time. The HYDRUS-1D model accurately described release and transport of 2,4- and 2,6-DNT from M1 propellant. Dissolution rates for M1 in the stirred reactor and column studies were similar, indicating that batch dissolution rates are potentially useful to represent field conditions.


Asunto(s)
Carcinógenos/química , Dinitrobencenos/química , Suelo , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Carcinógenos/metabolismo , Dinitrobencenos/metabolismo , Contaminantes Químicos del Agua/metabolismo
7.
Environ Sci Technol ; 42(7): 2542-50, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18504994

RESUMEN

Large-scale aerobic windrow composting has been used to bioremediate washout lagoon soils contaminated with the explosives TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) at several sites within the United States. We previously used 15N NMR to investigate the reduction and binding of T15NT in aerobic bench-scale reactors simulating the conditions of windrow composting. These studies have been extended to 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT), which, as impurities in TNT, are usually presentwherever soils have been contaminated with TNT. Liquid-state 15N NMR analyses of laboratory reactions between 4-methyl-3-nitroaniline-15N, the major monoamine reduction product of 2,4DNT, and the Elliot soil humic acid, both in the presence and absence of horseradish peroxidase, indicated that the amine underwent covalent binding with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and non-heterocyclic condensation products. Liquid-state 15N NMR analyses of the methanol extracts of 20 day aerobic bench-scale composts of 2,4-di-15N-nitrotoluene and 2,6-di-15N-nitrotoluene revealed the presence of nitrite and monoamine, but not diamine, reduction products, indicating the occurrence of both dioxygenase enzyme and reductive degradation pathways. Solid-state CP/MAS 15N NMR analyses of the whole composts, however, suggested that reduction to monoamines followed by covalent binding of the amines to organic matter was the predominant pathway.


Asunto(s)
Aerobiosis , Dinitrobencenos/química , Espectroscopía de Resonancia Magnética/métodos , Suelo , Isótopos de Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA