Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 26(66): 15212-15225, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-32584436

RESUMEN

Boron dipyrromethene (BODIPY) dyes represent a particular class within the broad array of potential photosensitizers. Their highly fluorescent nature opens the door for theragnostic applications, combining imaging and therapy using a single, easily synthesized chromophore. However, near-infrared absorption is strongly desired for photodynamic therapy to enhance tissue penetration. Furthermore, singlet oxygen should preferentially be generated without the incorporation of heavy atoms, as these often require additional synthetic efforts and/or afford dark cytotoxicity. Solutions for both problems are known, but have never been successfully combined in one simple BODIPY material. Here, we present a series of compact BODIPY-acridine dyads, active in the phototherapeutic window and showing balanced brightness and phototoxic power. Although the donor-acceptor design was envisioned to introduce a charge transfer state to assist in intersystem crossing, quantum-chemical calculations refute this. Further photophysical investigations suggest the presence of exciplex states and their involvement in singlet oxygen formation.

2.
J Org Chem ; 80(4): 2425-30, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25611254

RESUMEN

A series of fully conjugated quinoxaline-based oligophenylene macrocycles is synthesized by Ni(0)-mediated Yamamoto-type diaryl homocoupling of (fluorinated) 2,3-bis(4'-bromophenyl)quinoxaline precursors. Cyclotrimers and cyclotetramers are obtained as the dominant reaction products. The cyclooligomers are fully characterized, including single-crystal X-ray structures, and their optoelectronic properties are analyzed with respect to possible applications in host-guest chemistry and organic electronics.

3.
Org Biomol Chem ; 12(26): 4663-72, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24865374

RESUMEN

A series of thiazolo[5,4-d]thiazole-based small molecule organic optoelectronic materials is synthesized via a straightforward microwave-activated Pd-catalyzed C-H arylation protocol. The procedure allows us to obtain extended 2,5-dithienylthiazolo[5,4-d]thiazole chromophores with tailor-made energy levels and absorption patterns, depending on the introduced (het)aryl moieties and the molecular (a)symmetry, by shortened sequences without organometallic intermediates. The synthesized materials can be applied as either electron donor or electron acceptor light-harvesting materials in molecular bulk heterojunction organic solar cells.

4.
ACS Biomater Sci Eng ; 5(4): 1967-1977, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33405521

RESUMEN

Fluorescent conjugated polymers formulated in nanoparticles show attractive properties to be used as bioimaging probes. However, their fluorescence brightness is generally limited by quenching phenomena due to interchain aggregation in the confined nanoparticle space. In this work, branched conjugated polymer networks are investigated as a way to enhance the photoluminescence quantum yield of the resulting conjugated polymer nanoparticles (CPNs). 1,3,5-Tribromobenzene and 2,2',7,7'-tetrabromo-9,9'-spirobifluorene are chosen as branching moieties and are added in 3 or 5 mol % to the poly(p-phenylene ethynylene) (PPE) conjugated polymer synthesis. Nanoparticles of all samples are prepared via the combined miniemulsion/solvent evaporation technique. The optical properties of the branched polymers in solution and in nanoparticle form are then compared to those of the linear PPE counterpart. The fluorescence quantum yield of the CPNs increases from 5 to 11% for the samples containing 1,3,5-tribromobenzene. Furthermore, when 5 mol % of either branching molecule is used, the one-photon fluorescence brightness doubles. The nanoparticles show low cytotoxicity in A549 human lung carcinoma cells up to a concentration of 100 µg/mL for 24 h. They also exhibit good particle uptake into cells and compatibility with two-photon imaging.

5.
Materials (Basel) ; 9(3)2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28773308

RESUMEN

The stability of polymer solar cells (PSCs) can be influenced by the introduction of particular moieties on the conjugated polymer side chains. In this study, two series of donor-acceptor copolymers, based on bis(thienyl)dialkoxybenzene donor and benzo[c][1,2,5]thiadiazole (BT) or thiazolo[5,4-d]thiazole (TzTz) acceptor units, were selected toward effective device scalability by roll-coating. The influence of the partial exchange (5% or 10%) of the solubilizing 2-hexyldecyloxy by alternative 2-phenylethoxy groups on efficiency and stability was investigated. With an increasing 2-phenylethoxy ratio, a decrease in solar cell efficiency was observed for the BT-based series, whereas the efficiencies for the devices based on the TzTz polymers remained approximately the same. The photochemical degradation rate for PSCs based on the TzTz polymers decreased with an increasing 2-phenylethoxy ratio. Lifetime studies under constant sun irradiance showed a diminishing initial degradation rate for the BT-based devices upon including the alternative side chains, whereas the (more stable) TzTz-based devices degraded at a faster rate from the start of the experiment upon partly exchanging the side chains. No clear trends in the degradation behavior, linked to the copolymer structural changes, could be established at this point, evidencing the complex interplay of events determining PSCs' lifetime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA