Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 17(8): e1009739, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34347852

RESUMEN

Long polycytidine (polyC) tracts varying in length from 50 to 400 nucleotides were first described in the 5'-noncoding region (NCR) of genomes of picornaviruses belonging to the Cardio- and Aphthovirus genera over 50 years ago, but the molecular basis of their function is still unknown. Truncation or complete deletion of the polyC tracts in picornaviruses compromises virulence and pathogenicity but do not affect replicative fitness in vitro, suggesting a role as "viral security" RNA element. The evidence available suggests that the presence of a long polyC tract is required for replication in immune cells, which impacts viral distribution and targeting, and, consequently, pathogenic progression. Viral attenuation achieved by reduction of the polyC tract length has been successfully used for vaccine strategies. Further elucidation of the role of the polyC tract in viral replication cycle and its connection with replication in immune cells has the potential to expand the arsenal of tools in the fight against cancer in oncolytic virotherapy (OV). Here, we review the published data on the biological significance and mechanisms of action of the polyC tract in viral pathogenesis in Cardio- and Aphthoviruses.


Asunto(s)
Aphthovirus/genética , Cardiovirus/genética , Viroterapia Oncolítica/métodos , Poli C/genética , Replicación Viral , Animales , Humanos
2.
Mol Ther Oncol ; 32(3): 200822, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39040851

RESUMEN

Sarcomas are a rare and highly diverse group of malignancies of mesenchymal origin. While sarcomas are generally considered resistant to immunotherapy, recent studies indicate subtype-specific differences in clinical response to checkpoint inhibitors (CPIs) that are associated with distinct immune phenotypes present in sarcoma subtypes. Oncolytic viruses (OVs) are designed to selectively infect and kill tumor cells and induce intratumoral immune infiltration, enhancing immunogenicity and thereby sensitizing tumors to immunotherapy. Herein we review the accumulated clinical data evaluating OVs in sarcoma. Small numbers of patients with sarcoma were enrolled in early-stage OV trials as part of larger solid tumor cohorts demonstrating safety but providing limited insight into the biological effects due to the low patient numbers and lack of histologic grouping. Several recent studies have investigated talimogene laherparepvec (T-VEC), an approved oncolytic herpes simplex virus (HSV-1), in combination therapy regimens in sarcoma patient cohorts. These studies have shown promising responses in heavily pre-treated and immunotherapy-resistant patients associated with increased intratumoral immune infiltration. As new and more potent OVs enter the clinical arena, prospective evaluation in subtype-specific cohorts with correlative studies to define biomarkers of response will be critical to advancing this promising approach for sarcoma therapy.

3.
Mol Ther Oncolytics ; 28: 15-30, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36619293

RESUMEN

Mengovirus is an oncolytic picornavirus whose broad host range allows for testing in immunocompetent cancer models. Two pathogenicity-ablating approaches, polycytidine (polyC) tract truncation and microRNA (miRNA) targets insertion, eliminated the risk of encephalomyocarditis. To investigate whether a polyC truncated, miRNA-detargeted oncolytic Mengovirus might be boosted, we partially or fully rebuilt the polyC tract into the 5' noncoding region (NCR) of polyC-deleted (MC0) oncolytic constructs (NC) carrying miRNA target (miRT) insertions to eliminate cardiac/muscular (miR-133b and miR-208a) and neuronal (miR-124) tropisms. PolyC-reconstituted viruses (MC24-NC and MC37-NC) replicated in vitro and showed the expected tropism restrictions, but reduced cytotoxicity and miRT deletions were frequently observed. In the MPC-11 immune competent mouse plasmacytoma model, both intratumoral and systemic administration of MC0-NC led to faster tumor responses than MC24-NC or MC37-NC, with combined durable complete response rates of 75%, 0.5%, and 30%, respectively. Secondary viremia was higher following MC0-NC versus MC24-NC or MC37-NC therapy. Sequence analysis of virus progeny from treated mice revealed a high prevalence of miRT sequences loss among MC24- and MC37- viral genomes, but not in MC0-NC. Overall, MC0-NC was capable of stably retaining miRT sites and provided a more effective treatment and is therefore our lead Mengovirus candidate for clinical translation.

4.
Mol Ther Oncolytics ; 18: 236-246, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32728612

RESUMEN

Virus-infected cells release type 1 interferons, which induce an antiviral state in neighboring cells. Naturally occurring viruses are therefore equipped with stealth replication strategies to limit virus sensing and/or with combat strategies to prevent or reverse the antiviral state. Here we show that oncolytic viruses with simple RNA genomes whose spread was suppressed in tumor cells pretreated with interferon were able to replicate efficiently when the cells were coinfected with a poxvirus known to encode a diversity of innate immune combat proteins. In vivo the poxvirus was shown to reverse the intratumoral antiviral state, rescuing RNA virus replication in an otherwise restrictive syngeneic mouse tumor model leading to antitumor efficacy. Pairing of complementary oncolytic viruses is a promising strategy to enhance the antitumor activity of this novel class of anticancer drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA