RESUMEN
We show that quantum diffusion near a quantum critical point can provide an efficient mechanism of quantum annealing. It is based on the diffusion-mediated recombination of excitations in open systems far from thermal equilibrium. We find that, for an Ising spin chain coupled to a bosonic bath and driven by a monotonically decreasing transverse field, excitation diffusion sharply slows down below the quantum critical region. This leads to spatial correlations and effective freezing of the excitation density. Still, obtaining an approximate solution of an optimization problem via the diffusion-mediated quantum annealing can be faster than via closed-system quantum annealing or Glauber dynamics.
RESUMEN
Fluorescent nucleic acid base analogues are important spectroscopic tools for understanding local structure and dynamics of DNA and RNA. We studied the orientations and magnitudes of the electric dipole transition moments (EDTMs) of 6-methyl isoxanthopterin (6-MI), a fluorescent analogue of guanine that has been particularly useful in biological studies. Using a combination of absorption spectroscopy, linear dichroism (LD) and quantum chemical calculations, we identified six electronic transitions that occur within the 25,000-50,000 cm(-1) spectral range. Our results indicate that the two experimentally observed lowest-energy transitions, which occur at 29,687 cm(-1) (337 nm) and 34,596 cm(-1) (289 nm), are each polarized within the plane of the 6-MI base. A third in-plane polarized transition is experimentally observed at 47,547 cm(-1) (210 nm). The theoretically predicted orientation of the lowest-energy transition moment agrees well with experiment. Based on these results, we constructed an exciton model to describe the absorption spectra of a 6-MI dinucleotide-substituted double-stranded DNA construct. This model is in good agreement with the experimental data. The orientations and intensities of the low-energy electronic transitions of 6-MI reported here should be useful for studying local conformations of DNA and RNA in biologically important complexes.
Asunto(s)
Colorantes Fluorescentes/química , Xantopterina/análogos & derivados , ADN Forma B/química , Modelos Químicos , Estructura Molecular , Espectrofotometría Ultravioleta , Xantopterina/químicaRESUMEN
By applying a phase-modulation fluorescence approach to 2D electronic spectroscopy, we studied the conformation-dependent exciton coupling of a porphyrin dimer embedded in a phospholipid bilayer membrane. Our measurements specify the relative angle and separation between interacting electronic transition dipole moments and thus provide a detailed characterization of dimer conformation. Phase-modulation 2D fluorescence spectroscopy (PM-2D FS) produces 2D spectra with distinct optical features, similar to those obtained using 2D photon-echo spectroscopy. Specifically, we studied magnesium meso tetraphenylporphyrin dimers, which form in the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. Comparison between experimental and simulated spectra show that although a wide range of dimer conformations can be inferred by either the linear absorption spectrum or the 2D spectrum alone, consideration of both types of spectra constrain the possible structures to a "T-shaped" geometry. These experiments establish the PM-2D FS method as an effective approach to elucidate chromophore dimer conformation.
Asunto(s)
Liposomas/metabolismo , Modelos Biológicos , Porfirinas/metabolismo , Conformación Proteica , Multimerización de Proteína/fisiología , Espectrometría de Fluorescencia/métodos , Biología ComputacionalRESUMEN
Devising an efficient exploration of the search space is one of the key challenges in the design of combinatorial optimization algorithms. Here, we introduce the Generator-Enhanced Optimization (GEO) strategy: a framework that leverages any generative model (classical, quantum, or quantum-inspired) to solve optimization problems. We focus on a quantum-inspired version of GEO relying on tensor-network Born machines, and referred to hereafter as TN-GEO. To illustrate our results, we run these benchmarks in the context of the canonical cardinality-constrained portfolio optimization problem by constructing instances from the S&P 500 and several other financial stock indexes, and demonstrate how the generalization capabilities of these quantum-inspired generative models can provide real value in the context of an industrial application. We also comprehensively compare state-of-the-art algorithms and show that TN-GEO is among the best; a remarkable outcome given the solvers used in the comparison have been fine-tuned for decades in this real-world industrial application. Also, a promising step toward a practical advantage with quantum-inspired models and, subsequently, with quantum generative models.
RESUMEN
We studied the equilibrium conformations of a zinc porphyrin tweezer composed of two carboxylphenyl-functionalized zinc tetraphenyl porphyrin subunits connected by a 1,4-butyndiol spacer, which was suspended inside the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. By combining phase-modulation two-dimensional fluorescence spectroscopy (2D FS) with linear absorbance and fluorimetry, we determined that the zinc porphyrin tweezer adopts a mixture of folded and extended conformations in the membrane. By fitting an exciton-coupling model to a series of data sets recorded over a range of temperatures (17-85 °C) and at different laser center wavelengths, we determined that the folded form of the tweezer is stabilized by a favorable change in the entropy of the local membrane environment. Our results provide insights toward understanding the balance of thermodynamic factors that govern molecular assembly in membranes.
Asunto(s)
Liposomas/química , Metaloporfirinas/química , Conformación Molecular , Temperatura , Dimerización , Modelos Moleculares , Fosforilcolina/química , Espectrometría de FluorescenciaRESUMEN
Parametrized quantum circuits (PQCs) represent a promising framework for using present-day quantum hardware to solve diverse problems in materials science, quantum chemistry, and machine learning. We introduce a "synergistic" approach that addresses two prominent issues with these models: the prevalence of barren plateaus in PQC optimization landscapes, and the difficulty to outperform state-of-the-art classical algorithms. This framework first uses classical resources to compute a tensor network encoding a high-quality solution, and then converts this classical output into a PQC which can be further improved using quantum resources. We provide numerical evidence that this framework effectively mitigates barren plateaus in systems of up to 100 qubits using only moderate classical resources, with overall performance improving as more classical or quantum resources are employed. We believe our results highlight that classical simulation methods are not an obstacle to overcome in demonstrating practically useful quantum advantage, but rather can help quantum methods find their way.
RESUMEN
The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.
RESUMEN
Calibration of quantum computers is essential to the effective utilisation of their quantum resources. Specifically, the performance of quantum annealers is likely to be significantly impaired by noise in their programmable parameters, effectively misspecification of the computational problem to be solved, often resulting in spurious suboptimal solutions. We developed a strategy to determine and correct persistent, systematic biases between the actual values of the programmable parameters and their user-specified values. We applied the recalibration strategy to two D-Wave Two quantum annealers, one at NASA Ames Research Center in Moffett Field, California, and another at D-Wave Systems in Burnaby, Canada. We show that the recalibration procedure not only reduces the magnitudes of the biases in the programmable parameters but also enhances the performance of the device on a set of random benchmark instances.
RESUMEN
Lattice protein folding models are a cornerstone of computational biophysics. Although these models are a coarse grained representation, they provide useful insight into the energy landscape of natural proteins. Finding low-energy threedimensional structures is an intractable problem even in the simplest model, the Hydrophobic-Polar (HP) model. Description of protein-like properties are more accurately described by generalized models, such as the one proposed by Miyazawa and Jernigan (MJ), which explicitly take into account the unique interactions among all 20 amino acids. There is theoretical and experimental evidence of the advantage of solving classical optimization problems using quantum annealing over its classical analogue (simulated annealing). In this report, we present a benchmark implementation of quantum annealing for lattice protein folding problems (six different experiments up to 81 superconducting quantum bits). This first implementation of a biophysical problem paves the way towards studying optimization problems in biophysics and statistical mechanics using quantum devices.
Asunto(s)
Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Proteínas/química , Algoritmos , Secuencia de Aminoácidos , Simulación por Computador , Teoría CuánticaRESUMEN
Two-dimensional fluorescence spectroscopy (2D FS) is applied to determine the conformation and femtosecond electronic population transfer in a dimer of magnesium meso tetraphenylporphyrin. The dimers are prepared by self-assembly of the monomer within the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. A theoretical framework to describe 2D FS experiments is presented, and a direct comparison is made between the observables of this measurement and those of 2D electronic spectroscopy (2D ES). The sensitivity of the method to varying dimer conformation is explored. A global multivariable fitting analysis of linear and 2D FS data indicates that the dimer adopts a "bent T-shaped" conformation. Moreover, the manifold of singly excited excitons undergoes rapid electronic dephasing and downhill population transfer on the time scale of â¼95 fs. The open conformation of the dimer suggests that its self-assembly is favored by an increase in entropy of the local membrane environment.