Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 188: 15-29, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38224852

RESUMEN

FKBP12.6, a binding protein to the immunosuppressant FK506, which also binds the ryanodine receptor (RyR2) in the heart, has been proposed to regulate RyR2 function and to have antiarrhythmic properties. However, the level of FKBP12.6 expression in normal hearts remains elusive and some controversies still persist regarding its effects, both in basal conditions and during ß-adrenergic stimulation. We quantified FKBP12.6 in the left ventricles (LV) of WT (wild-type) mice and in two novel transgenic models expressing distinct levels of FKBP12.6, using a custom-made specific anti-FKBP12.6 antibody and a recombinant protein. FKBP12.6 level in WT LV was very low (0.16 ± 0.02 nmol/g of LV), indicating that <15% RyR2 monomers are bound to the protein. Mice with 14.1 ± 0.2 nmol of FKBP12.6 per g of LV (TG1) had mild cardiac hypertrophy and normal function and were protected against epinephrine/caffeine-evoked arrhythmias. The ventricular myocytes showed higher [Ca2+]i transient amplitudes than WT myocytes and normal SR-Ca2+ load, while fewer myocytes showed Ca2+ sparks. TG1 cardiomyocytes responded to 50 nM Isoproterenol increasing these [Ca2+]i parameters and producing RyR2-Ser2808 phosphorylation. Mice with more than twice the TG1 FKBP12.6 value (TG2) showed marked cardiac hypertrophy with calcineurin activation and more arrhythmias than WT mice during ß-adrenergic stimulation, challenging the protective potential of high FKBP12.6. RyR2R420Q CPVT mice overexpressing FKBP12.6 showed fewer proarrhythmic events and decreased incidence and duration of stress-induced bidirectional ventricular tachycardia. Our study, therefore, quantifies for the first time endogenous FKBP12.6 in the mouse heart, questioning its physiological relevance, at least at rest due its low level. By contrast, our work demonstrates that with caution FKBP12.6 remains an interesting target for the development of new antiarrhythmic therapies.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular , Proteínas de Unión a Tacrolimus , Animales , Ratones , Adrenérgicos , Antiarrítmicos/farmacología , Cardiomegalia , Incidencia , Miocitos Cardíacos , Taquicardia Ventricular/genética
2.
Circ Res ; 130(1): 27-44, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34814703

RESUMEN

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+-ATPase 2 (SERCA2) mediates Ca2+ reuptake into SR and thereby promotes cardiomyocyte relaxation, whereas the ryanodine receptor (RYR) mediates Ca2+ release from SR and triggers contraction. Ca2+/CaMKII (CaM [calmodulin]-dependent protein kinase II) regulates activities of SERCA2 through phosphorylation of PLN (phospholamban) and RYR through direct phosphorylation. However, the mechanisms for CaMKIIδ anchoring to SERCA2-PLN and RYR and its regulation by local Ca2+ signals remain elusive. The objective of this study was to investigate CaMKIIδ anchoring and regulation at SERCA2-PLN and RYR. METHODS: A role for AKAP18δ (A-kinase anchoring protein 18δ) in CaMKIIδ anchoring and regulation was analyzed by bioinformatics, peptide arrays, cell-permeant peptide technology, immunoprecipitations, pull downs, transfections, immunoblotting, proximity ligation, FRET-based CaMKII activity and ELISA-based assays, whole cell and SR vesicle fluorescence imaging, high-resolution microscopy, adenovirus transduction, adenoassociated virus injection, structural modeling, surface plasmon resonance, and alpha screen technology. RESULTS: Our results show that AKAP18δ anchors and directly regulates CaMKIIδ activity at SERCA2-PLN and RYR, via 2 distinct AKAP18δ regions. An N-terminal region (AKAP18δ-N) inhibited CaMKIIδ through binding of a region homologous to the natural CaMKII inhibitor peptide and the Thr17-PLN region. AKAP18δ-N also bound CaM, introducing a second level of control. Conversely, AKAP18δ-C, which shares homology to neuronal CaMKIIα activator peptide (N2B-s), activated CaMKIIδ by lowering the apparent Ca2+ threshold for kinase activation and inducing CaM trapping. While AKAP18δ-C facilitated faster Ca2+ reuptake by SERCA2 and Ca2+ release through RYR, AKAP18δ-N had opposite effects. We propose a model where the 2 unique AKAP18δ regions fine-tune Ca2+-frequency-dependent activation of CaMKIIδ at SERCA2-PLN and RYR. CONCLUSIONS: AKAP18δ anchors and functionally regulates CaMKII activity at PLN-SERCA2 and RYR, indicating a crucial role of AKAP18δ in regulation of the heartbeat. To our knowledge, this is the first protein shown to enhance CaMKII activity in heart and also the first AKAP (A-kinase anchoring protein) reported to anchor a CaMKII isoform, defining AKAP18δ also as a CaM-KAP.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Animales , Sitios de Unión , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Células Cultivadas , Células HEK293 , Humanos , Miocitos Cardíacos/metabolismo , Unión Proteica , Ratas , Ratas Wistar
3.
Nature ; 502(7471): 372-6, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24077098

RESUMEN

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an enzyme with important regulatory functions in the heart and brain, and its chronic activation can be pathological. CaMKII activation is seen in heart failure, and can directly induce pathological changes in ion channels, Ca(2+) handling and gene transcription. Here, in human, rat and mouse, we identify a novel mechanism linking CaMKII and hyperglycaemic signalling in diabetes mellitus, which is a key risk factor for heart and neurodegenerative diseases. Acute hyperglycaemia causes covalent modification of CaMKII by O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAc modification of CaMKII at Ser 279 activates CaMKII autonomously, creating molecular memory even after Ca(2+) concentration declines. O-GlcNAc-modified CaMKII is increased in the heart and brain of diabetic humans and rats. In cardiomyocytes, increased glucose concentration significantly enhances CaMKII-dependent activation of spontaneous sarcoplasmic reticulum Ca(2+) release events that can contribute to cardiac mechanical dysfunction and arrhythmias. These effects were prevented by pharmacological inhibition of O-GlcNAc signalling or genetic ablation of CaMKIIδ. In intact perfused hearts, arrhythmias were aggravated by increased glucose concentration through O-GlcNAc- and CaMKII-dependent pathways. In diabetic animals, acute blockade of O-GlcNAc inhibited arrhythmogenesis. Thus, O-GlcNAc modification of CaMKII is a novel signalling event in pathways that may contribute critically to cardiac and neuronal pathophysiology in diabetes and other diseases.


Asunto(s)
Arritmias Cardíacas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Complicaciones de la Diabetes/metabolismo , Hiperglucemia/metabolismo , Acetilglucosamina/metabolismo , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/enzimología , Bencilaminas/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Calcio/metabolismo , Complicaciones de la Diabetes/enzimología , Diazooxonorleucina/farmacología , Activación Enzimática/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Glicosilación/efectos de los fármacos , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/enzimología , Ratones , Miocardio/citología , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Ratas , Retículo Sarcoplasmático/metabolismo , Sulfonamidas/farmacología
4.
Proc Natl Acad Sci U S A ; 112(13): 3991-6, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25829540

RESUMEN

Exchange proteins directly activated by cAMP (Epac1 and Epac2) have been recently recognized as key players in ß-adrenergic-dependent cardiac arrhythmias. Whereas Epac1 overexpression can lead to cardiac hypertrophy and Epac2 activation can be arrhythmogenic, it is unknown whether distinct subcellular distribution of Epac1 vs. Epac2 contributes to differential functional effects. Here, we characterized and used a novel fluorescent cAMP derivate Epac ligand 8-[Pharos-575]-2'-O-methyladenosine-3',5'-cyclic monophosphate (Φ-O-Me-cAMP) in mice lacking either one or both isoforms (Epac1-KO, Epac2-KO, or double knockout, DKO) to assess isoform localization and function. Fluorescence of Φ-O-Me-cAMP was enhanced by binding to Epac. Unlike several Epac-specific antibodies tested, Φ-O-Me-cAMP exhibited dramatically reduced signals in DKO myocytes. In WT, the apparent binding affinity (Kd = 10.2 ± 0.8 µM) is comparable to that of cAMP and nonfluorescent Epac-selective agonist 8-(4-chlorophenylthio)-2-O-methyladenosine-3'-,5'-cyclicmonophosphate (OMe-CPT). Φ-O-Me-cAMP readily entered intact myocytes, but did not activate PKA and its binding was competitively inhibited by OMe-CPT, confirming its Epac specificity. Φ-O-Me-cAMP is a weak partial agonist for purified Epac, but functioned as an antagonist for four Epac signaling pathways in myocytes. Epac2 and Epac1 were differentially concentrated along T tubules and around the nucleus, respectively. Epac1-KO abolished OMe-CPT-induced nuclear CaMKII activation and export of transcriptional regulator histone deacetylase 5. In conclusion, Epac1 is localized and functionally involved in nuclear signaling, whereas Epac2 is located at the T tubules and regulates arrhythmogenic sarcoplasmic reticulum Ca leak.


Asunto(s)
Colorantes Fluorescentes/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ligandos , Animales , Calcio/metabolismo , Cardiomiopatías/metabolismo , Núcleo Celular/metabolismo , AMP Cíclico/análogos & derivados , AMP Cíclico/química , AMP Cíclico/metabolismo , Células HEK293 , Histona Desacetilasas/metabolismo , Humanos , Cinética , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal , Transcripción Genética
5.
J Mol Cell Cardiol ; 108: 8-16, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28476660

RESUMEN

Cardiac ß-adrenergic receptors (ß-AR) and Ca2+-Calmodulin dependent protein kinase (CaMKII) regulate both physiological and pathophysiological Ca2+ signaling. Elevated diastolic Ca2+ leak from the sarcoplasmic reticulum (SR) contributes to contractile dysfunction in heart failure and to arrhythmogenesis. ß-AR activation is known to increase SR Ca2+ leak via CaMKII-dependent phosphorylation of the ryanodine receptor. Two independent and reportedly parallel pathways have been implicated in this ß-AR-CaMKII cascade, one involving exchange protein directly activated by cAMP (Epac2) and another involving nitric oxide synthase 1 (NOS1). Here we tested whether Epac and NOS function in a single series pathway to increase ß-AR induced and CaMKII-dependent SR Ca2+ leak. Leak was measured as both Ca2+ spark frequency and tetracaine-induced shifts in SR Ca2+, in mouse and rabbit ventricular myocytes. Direct Epac activation by 8-CPT (8-(4-chlorophenylthio)-2'-O-methyl-cAMP) mimicked ß-AR-induced SR Ca2+ leak, and both were blocked by NOS inhibition. The same was true for myocyte CaMKII activation (assessed via a FRET-based reporter) and ryanodine receptor phosphorylation. Inhibitor and phosphorylation studies also implicated phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) downstream of Epac and above NOS activation in this pathway. We conclude that these two independently characterized parallel pathways function mainly via a single series arrangement (ß-AR-cAMP-Epac-PI3K-Akt-NOS1-CaMKII) to mediate increased SR Ca2+ leak. Thus, for ß-AR activation the cAMP-PKA branch effects inotropy and lusitropy (by effects on Ca2+ current and SR Ca2+-ATPase), this cAMP-Epac-NOS pathway increases pathological diastolic SR Ca2+leak. This pathway distinction may allow novel SR Ca2+ leak therapeutic targeting in treatment of arrhythmias in heart failure that spare the inotropic and lusitropic effects of the PKA branch.


Asunto(s)
Calcio/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Retículo Sarcoplasmático/metabolismo , Transducción de Señal , Animales , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Conejos
6.
Circ Res ; 114(7): 1114-24, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24563457

RESUMEN

RATIONALE: Calmodulin (CaM) mutations are associated with an autosomal dominant syndrome of ventricular arrhythmia and sudden death that can present with divergent clinical features of catecholaminergic polymorphic ventricular tachycardia (CPVT) or long QT syndrome (LQTS). CaM binds to and inhibits ryanodine receptor (RyR2) Ca release channels in the heart, but whether arrhythmogenic CaM mutants alter RyR2 function is not known. OBJECTIVE: To gain mechanistic insight into how human CaM mutations affect RyR2 Ca channels. METHODS AND RESULTS: We studied recombinant CaM mutants associated with CPVT (N54I and N98S) or LQTS (D96V, D130G, and F142L). As a group, all LQTS-associated CaM mutants (LQTS-CaMs) exhibited reduced Ca affinity, whereas CPVT-associated CaM mutants (CPVT-CaMs) had either normal or modestly lower Ca affinity. In permeabilized ventricular myocytes, CPVT-CaMs at a physiological intracellular concentration (100 nmol/L) promoted significantly higher spontaneous Ca wave and spark activity, a typical cellular phenotype of CPVT. Compared with wild-type CaM, CPVT-CaMs caused greater RyR2 single-channel open probability and showed enhanced binding affinity to RyR2. Even a 1:8 mixture of CPVT-CaM:wild-type-CaM activated Ca waves, demonstrating functional dominance. In contrast, LQTS-CaMs did not promote Ca waves and exhibited either normal regulation of RyR2 single channels (D96V) or lower RyR2-binding affinity (D130G and F142L). None of the CaM mutants altered Ca/CaM binding to CaM-kinase II. CONCLUSIONS: A small proportion of CPVT-CaM is sufficient to evoke arrhythmogenic Ca disturbances, whereas LQTS-CaMs do not. Our findings explain the clinical presentation and autosomal dominant inheritance of CPVT-CaM mutations and suggest that RyR2 interactions are unlikely to explain arrhythmogenicity of LQTS-CaM mutations.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Calmodulina/metabolismo , Mutación Missense , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calmodulina/genética , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Canal Liberador de Calcio Receptor de Rianodina/genética
7.
J Mol Cell Cardiol ; 85: 282-91, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26080362

RESUMEN

Chronic activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the deleterious effects of ß-adrenergic receptor (ß-AR) signaling on the heart, in part, by enhancing RyR2-mediated sarcoplasmic reticulum (SR) Ca(2+) leak. We used CaMKIIδ knockout (CaMKIIδ-KO) mice and knock-in mice with an inactivated CaMKII site S2814 on the ryanodine receptor type 2 (S2814A) to investigate the involvement of these processes in ß-AR signaling and cardiac remodeling. Langendorff-perfused hearts from CaMKIIδ-KO mice showed inotropic and chronotropic responses to isoproterenol (ISO) that were similar to those of wild type (WT) mice; however, in CaMKIIδ-KO mice, CaMKII phosphorylation of phospholamban and RyR2 was decreased and isolated myocytes from CaMKIIδ-KO mice had reduced SR Ca(2+) leak in response to isoproterenol (ISO). Chronic catecholamine stress with ISO induced comparable increases in relative heart weight and other measures of hypertrophy from day 9 through week 4 in WT and CaMKIIδ-KO mice, but the development of cardiac fibrosis was prevented in CaMKIIδ-KO animals. A 4-week challenge with ISO resulted in reduced cardiac function and pulmonary congestion in WT, but not in CaMKIIδ-KO or S2814A mice, implicating CaMKIIδ-dependent phosphorylation of RyR2-S2814 in the cardiomyopathy, independent of hypertrophy, induced by prolonged ß-AR stimulation.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Procesamiento Proteico-Postraduccional , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio , Cardiomegalia/enzimología , Cardiomiopatías/enzimología , Células Cultivadas , Fibrosis , Isoproterenol/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Fosforilación , Retículo Sarcoplasmático/metabolismo , Remodelación Ventricular
8.
Circulation ; 127(8): 913-22, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23363625

RESUMEN

BACKGROUND: ß-Adrenergic receptor (ß-AR) activation can provoke cardiac arrhythmias mediated by cAMP-dependent alterations of Ca(2+) signaling. However, cAMP can activate both protein kinase A and an exchange protein directly activated by cAMP (Epac), but their functional interaction is unclear. In heart, selective Epac activation can induce potentially arrhythmogenic sarcoplasmic reticulum (SR) Ca(2+) release that involves Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) effects on the ryanodine receptor (RyR). METHODS AND RESULTS: We tested whether physiological ß-AR activation causes Epac-mediated SR Ca(2+) leak and arrhythmias and whether it requires Epac1 versus Epac2, ß(1)-AR versus ß(2)-AR, and CaMKIIδ-dependent phosphorylation of RyR2-S2814. We used knockout (KO) mice for Epac1, Epac2, or both. All KOs exhibited unaltered basal cardiac function, Ca(2+) handling, and hypertrophy in response to pressure overload. However, SR Ca(2+) leak induced by the specific Epac activator 8-CPT in wild-type mice was abolished in Epac2-KO and double-KO mice but was unaltered in Epac1-KO mice. ß-AR-induced arrhythmias were also less inducible in Epac2-KO versus wild-type mice. ß-AR activation with protein kinase A inhibition mimicked 8-CPT effects on SR Ca(2+) leak and was prevented by blockade of ß(1)-AR but not ß(2)-AR. CaMKII inhibition (KN93) and genetic ablation of either CaMKIIδ or CaMKII phosphorylation on RyR2-S2814 prevented 8-CPT-induced SR Ca(2+) leak. CONCLUSIONS: ß(1)-AR activates Epac2 to induce SR Ca(2+) leak via CaMKIIδ-dependent phosphorylation of RyR2-S2814. This pathway contributes to ß-AR-induced arrhythmias and reduced cardiac function.


Asunto(s)
Arritmias Cardíacas/metabolismo , Señalización del Calcio/fisiología , Calcio/deficiencia , Calcio/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Receptores Adrenérgicos beta 1/fisiología , Retículo Sarcoplasmático/metabolismo , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/fisiopatología , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Retículo Sarcoplasmático/patología
9.
J Mol Cell Cardiol ; 59: 107-16, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23473775

RESUMEN

OBJECTIVE: CaMKII contributes to impaired contractility in heart failure by inducing SR Ca(2+)-leak. CaMKII-inhibition in the heart was suggested to be a novel therapeutic principle. Different CaMKII isoforms exist. Specifically targeting CaMKIIδ, the dominant isoform in the heart, could be of therapeutic potential without impairing other CaMKII isoforms. RATIONALE: We investigated whether cardiomyocyte function is affected by isoform-specific knockout (KO) of CaMKIIδ under basal conditions and upon stress, i.e. upon ß-adrenergic stimulation and during acidosis. RESULTS: Systolic cardiac function was largely preserved in the KO in vivo (echocardiography) corresponding to unchanged Ca(2+)-transient amplitudes and isolated myocyte contractility in vitro. CaMKII activity was dramatically reduced while phosphatase-1 inhibitor-1 was significantly increased. Surprisingly, while diastolic Ca(2+)-elimination was slower in KO most likely due to decreased phospholamban Thr-17 phosphorylation, frequency-dependent acceleration of relaxation was still present. Despite decreased SR Ca(2+)-reuptake at lower frequencies, SR Ca(2+)-content was not diminished, which might be due to reduced diastolic SR Ca(2+)-loss in the KO as a consequence of lower RyR Ser-2815 phosphorylation. Challenging KO myocytes with isoproterenol showed intact inotropic and lusitropic responses. During acidosis, SR Ca(2+)-reuptake and SR Ca(2+)-loading were significantly impaired in KO, resulting in an inability to maintain systolic Ca(2+)-transients during acidosis and impaired recovery. CONCLUSIONS: Inhibition of CaMKIIδ appears to be safe under basal physiologic conditions. Specific conditions exist (e.g. during acidosis) under which CaMKII-inhibition might not be helpful or even detrimental. These conditions will have to be more clearly defined before CaMKII inhibition is used therapeutically.


Asunto(s)
Acidosis/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Diástole/genética , Diástole/fisiología , Acoplamiento Excitación-Contracción , Ratones , Ratones Noqueados , Retículo Sarcoplasmático/metabolismo , Sístole/genética , Sístole/fisiología
10.
J Mol Cell Cardiol ; 53(5): 617-25, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22910094

RESUMEN

Cardiac actions of Epac (exchange protein directly activated by cAMP) are not completely elucidated. Epac induces cardiomyocytes hypertrophy, Ca(2+)/calmodulin protein kinase II (CaMKII) and excitation-transcription coupling in rat cardiac myocytes. Here we aimed to elucidate the pathway cascade involved in Epac sustained actions, as during the initiation of hypertrophy development, where ß-adrenergic signaling is chronically stimulated. Rats were treated with the Epac selective activator 8-pCPT during 4 weeks and Ca(2+) signaling was analyzed in isolated cardiac myocytes by confocal microscopy. We observed a positive inotropic effect manifested by increased [Ca(2+)](i) transient amplitudes. In order to further analyze these actions, we incubated adult cardiomyocytes in the presence of 8-pCPT. The effects were similar to those obtained in-vivo and are blunted by Epac1 knock down. Interestingly, the increase in [Ca(2+)] transients was abolished by protein synthesis blockade or when the downstream effectors of calmodulin (CaMKII or calcineurin) were inhibited, pointing to calmodulin (CaM) as an important downstream protein in Epac sustained actions. In fact, CaM expression was enhanced by 8-pCPT treatment in isolated cells, as found by Western blots. Moreover, the 8-pCPT-induced, PKA-independent, positive inotropic effect was favored by enhanced extracellular Ca(2+) influx via L-type Ca(2+) channels. However, 8-pCPT also induced aberrant Ca(2+) release as Ca(2+) waves and extra [Ca(2+)](i) transients, suggesting proarrhythmic effect. These results provide new insights regarding Epac cardiac actions, suggesting an important role in the initial compensation of the heart to pathological stimuli during the initiation of cardiac hypertrophy, favoring contraction but also arrhythmia risk.


Asunto(s)
Calmodulina/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Animales , Cafeína/farmacología , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Calmodulina/antagonistas & inhibidores , Calmodulina/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Células Cultivadas , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Activación Enzimática , Activadores de Enzimas/farmacología , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Masculino , Microscopía Confocal , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , ARN Interferente Pequeño/genética , Ratas , Ratas Wistar , Activación Transcripcional
11.
J Mol Cell Cardiol ; 52(1): 283-91, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22056318

RESUMEN

Epac is a guanine nucleotide exchange protein that is directly activated by cAMP, but whose cardiac cellular functions remain unclear. It is important to understand cardiac Epac signaling, because it is activated in parallel to classical cAMP-dependent signaling via protein kinase A. In addition to activating contraction, Ca(2+) is a key cardiac transcription regulator (excitation-transcription coupling). It is unknown how myocyte Ca(2+) signals are decoded in cardiac myocytes to control nuclear transcription. We examine Epac actions on cytosolic ([Ca(2+)](i)) and intranuclear ([Ca(2+)](n)) Ca(2+) homeostasis, focusing on whether Epac alters [Ca(2+)](n) and activates a prohypertrophic program in cardiomyocytes. Adult rat cardiomyocytes, loaded with fluo-3 were viewed by confocal microscopy during electrical field stimulation at 1Hz. Acute Epac activation by 8-pCPT increased Ca(2+) sparks and diastolic [Ca(2+)](i), but decreased systolic [Ca(2+)](i). The effects on diastolic [Ca(2+)](i) and Ca(2+) spark frequency were dependent on phospholipase C (PLC), inositol 1,4,5 triphosphate receptor (IP(3)R) and CaMKII activation. Interestingly, Epac preferentially increased [Ca(2+)](n) during both diastole and systole, correlating with the perinuclear expression pattern of Epac. Moreover, Epac activation induced histone deacetylase 5 (HDAC5) nuclear export, with consequent activation of the prohypertrophic transcription factor MEF2. These data provide the first evidence that the cAMP-binding protein Epac modulates cardiac nuclear Ca(2+) signaling by increasing [Ca(2+)](n) through PLC, IP(3)R and CaMKII activation, and initiates a prohypertrophic program via HDAC5 nuclear export and subsequent activation of the transcription factor MEF2.


Asunto(s)
Calcio/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Animales , Señalización del Calcio , Núcleo Celular/metabolismo , Diástole , Ratas , Ratas Wistar , Sístole
12.
Circulation ; 122(25): 2669-79, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21098440

RESUMEN

BACKGROUND: approximately half of patients with heart failure die suddenly as a result of ventricular arrhythmias. Although abnormal Ca(2+) release from the sarcoplasmic reticulum through ryanodine receptors (RyR2) has been linked to arrhythmogenesis, the molecular mechanisms triggering release of arrhythmogenic Ca(2+) remain unknown. We tested the hypothesis that increased RyR2 phosphorylation by Ca(2+)/calmodulin-dependent protein kinase II is both necessary and sufficient to promote lethal ventricular arrhythmias. METHODS AND RESULTS: mice in which the S2814 Ca(2+)/calmodulin-dependent protein kinase II site on RyR2 is constitutively activated (S2814D) develop pathological sarcoplasmic reticulum Ca(2+) release events, resulting in reduced sarcoplasmic reticulum Ca(2+) load on confocal microscopy. These Ca(2+) release events are associated with increased RyR2 open probability in lipid bilayer preparations. At baseline, young S2814D mice have structurally and functionally normal hearts without arrhythmias; however, they develop sustained ventricular tachycardia and sudden cardiac death on catecholaminergic provocation by caffeine/epinephrine or programmed electric stimulation. Young S2814D mice have a significant predisposition to sudden arrhythmogenic death after transverse aortic constriction surgery. Finally, genetic ablation of the Ca(2+)/calmodulin-dependent protein kinase II site on RyR2 (S2814A) protects mutant mice from pacing-induced arrhythmias versus wild-type mice after transverse aortic constriction surgery. CONCLUSIONS: our results suggest that Ca(2+)/calmodulin-dependent protein kinase II phosphorylation of RyR2 Ca(2+) release channels at S2814 plays an important role in arrhythmogenesis and sudden cardiac death in mice with heart failure.


Asunto(s)
Arritmias Cardíacas/epidemiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/epidemiología , Animales , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Muerte Súbita Cardíaca/epidemiología , Estimulación Eléctrica , Ratones , Ratones Transgénicos , Modelos Animales , Fosforilación , Factores de Riesgo , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/metabolismo
13.
Front Physiol ; 12: 734210, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690808

RESUMEN

Heart Failure (HF) is defined as the inability of the heart to efficiently pump out enough blood to maintain the body's needs, first at exercise and then also at rest. Alterations in Ca2+ handling contributes to the diminished contraction and relaxation of the failing heart. While most Ca2+ handling protein expression and/or function has been shown to be altered in many models of experimental HF, in this review, we focus in the sarcoplasmic reticulum (SR) Ca2+ release channel, the type 2 ryanodine receptor (RyR2). Various modifications of this channel inducing alterations in its function have been reported. The first was the fact that RyR2 is less responsive to activation by Ca2+ entry through the L-Type calcium channel, which is the functional result of an ultrastructural remodeling of the ventricular cardiomyocyte, with fewer and disorganized transverse (T) tubules. HF is associated with an elevated sympathetic tone and in an oxidant environment. In this line, enhanced RyR2 phosphorylation and oxidation have been shown in human and experimental HF. After several controversies, it is now generally accepted that phosphorylation of RyR2 at the Calmodulin Kinase II site (S2814) is involved in both the depressed contractile function and the enhanced arrhythmic susceptibility of the failing heart. Diminished expression of the FK506 binding protein, FKBP12.6, may also contribute. While these alterations have been mostly studied in the left ventricle of HF with reduced ejection fraction, recent studies are looking at HF with preserved ejection fraction. Moreover, alterations in the RyR2 in HF may also contribute to supraventricular defects associated with HF such as sinus node dysfunction and atrial fibrillation.

14.
Arch Cardiovasc Dis ; 114(11): 748-760, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34627704

RESUMEN

Diabetes mellitus is a metabolic disorder with a chronic hyperglycaemic state. Cardiovascular diseases are the primary cause of mortality in patients with diabetes. Increasing evidence supports the existence of diabetic cardiomyopathy, a cardiac dysfunction with impaired cardiac contraction and relaxation, independent of coronary and/or valvular complications. Diabetic cardiomyopathy can lead to heart failure. Several preclinical and clinical studies have aimed to decipher the underlying mechanisms of diabetic cardiomyopathy. Among all the co-factors, hyperglycaemia seems to play an important role in this pathology. Hyperglycaemia has been shown to alter cardiac metabolism and function through several deleterious mechanisms, such as oxidative stress, inflammation, accumulation of advanced glycated end-products and upregulation of the hexosamine biosynthesis pathway. These mechanisms are responsible for the activation of hypertrophic pathways, epigenetic modifications, mitochondrial dysfunction, cell apoptosis, fibrosis and calcium mishandling, leading to cardiac stiffness, as well as contractile and relaxation dysfunction. This review aims to describe the hyperglycaemic-induced alterations that participate in diabetic cardiomyopathy, and their correlation with the severity of the disease and patient mortality, and to provide an overview of cardiac outcomes of glucose-lowering therapy.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Hiperglucemia , Cardiomiopatías Diabéticas/etiología , Corazón , Humanos , Estrés Oxidativo
15.
Acta Physiol (Oxf) ; 232(3): e13691, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34022101

RESUMEN

Ca2+ mishandling is a common feature in several cardiovascular diseases such as heart failure (HF). In many cases, impairment of key players in intracellular Ca2+ homeostasis has been identified as the underlying mechanism of cardiac dysfunction and cardiac arrhythmias associated with HF. In this review, we summarize primary novel findings related to Ca2+ mishandling in HF progression. HF research has increasingly focused on the identification of new targets and the contribution of their role in Ca2+ handling to the progression of the disease. Recent research studies have identified potential targets in three major emerging areas implicated in regulation of Ca2+ handling: the innate immune system, bone metabolism factors and post-translational modification of key proteins involved in regulation of Ca2+ handling. Here, we describe their possible contributions to the progression of HF.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional , Retículo Sarcoplasmático/metabolismo
16.
Life Sci ; 283: 119857, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34339715

RESUMEN

AIM: Diabetic cardiomyopathy (DCM) accomodates a spectrum of cardiac abnormalities. This study aims to investigate whether DCM is associated with changes in cyclic adenosine 3'-5' monophosphate (cAMP) signaling, particularly cyclic nucleotide phosphodiesterases (PDEs). MAIN METHODS: Type 1 diabetes (T1D) was induced in rats by streptozotocin (STZ, 65 mg/kg) injection. Myocardial remodeling, structure and function were evaluated by histology and echocardiography, respectively. We delineated the sequential changes affecting cAMP signaling and characterized the expression pattern of the predominant cardiac PDE isoforms (PDE 1-5) and ß-adrenergic (ß-AR) receptors at 4, 8 and 12 weeks following diabetes induction, by real-time quantitative PCR and Western blot. cAMP levels were measured by immunoassays. KEY FINDINGS: T1D-induced DCM was associated with cardiac remodeling, steatosis and fibrosis. Upregulation of ß1-AR receptor transcripts was noted in diabetic hearts at 4 weeks along with an increase in cAMP levels and an upregulation in the ejection fraction and fraction shortening. However, ß2-AR receptors expression remained unchanged regardless of the disease stage. Moreover, we noted an early and specific upregulation of cardiac PDE1A, PDE2A, PDE4B, PDE4D and PDE5A expression at week 4, followed by increases in PDE3A levels in diabetic hearts at week 8. However, DCM was not associated with changes in PDE4A gene expression irrespective of the disease stage. SIGNIFICANCE: We show for the first time differential and time-specific regulations in cardiac PDEs, data that may prove useful in proposing new therapeutic approaches in T1D-induced DCM.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Cardiomiopatías Diabéticas/metabolismo , Masculino , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Hidrolasas Diéster Fosfóricas/fisiología , Ratas , Ratas Wistar , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal , Estreptozocina/farmacología
17.
Circulation ; 119(16): 2179-87, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19364981

RESUMEN

BACKGROUND: The mineralocorticoid pathway is involved in cardiac arrhythmias associated with heart failure through mechanisms that are incompletely understood. Defective regulation of the cardiac ryanodine receptor (RyR) is an important cause of the initiation of arrhythmias. Here, we examined whether the aldosterone pathway might modulate RyR function. METHODS AND RESULTS: Using the whole-cell patch clamp method, we observed an increase in the occurrence of delayed afterdepolarizations during action potential recordings in isolated adult rat ventricular myocytes exposed for 48 hours to aldosterone 100 nmol/L, in freshly isolated myocytes from transgenic mice with human mineralocorticoid receptor expression in the heart, and in wild-type littermates treated with aldosterone. Sarcoplasmic reticulum Ca(2+) load and RyR expression were not altered; however, RyR activity, visualized in situ by confocal microscopy, was increased in all cells, as evidenced by an increased occurrence and redistribution to long-lasting and broader populations of spontaneous Ca(2+) sparks. These changes were associated with downregulation of FK506-binding proteins (FKBP12 and 12.6), regulatory proteins of the RyR macromolecular complex. CONCLUSIONS: We suggest that in addition to modulation of Ca(2+) influx, overstimulation of the cardiac mineralocorticoid pathway in the heart might be a major upstream factor for aberrant Ca(2+) release during diastole, which contributes to cardiac arrhythmia in heart failure.


Asunto(s)
Arritmias Cardíacas/metabolismo , Mineralocorticoides/metabolismo , Miocitos Cardíacos/metabolismo , Receptores de Mineralocorticoides/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Aldosterona/metabolismo , Aldosterona/farmacología , Animales , Arritmias Cardíacas/fisiopatología , Señalización del Calcio/fisiología , Células Cultivadas , Regulación hacia Abajo/fisiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Proteínas Quinasas/metabolismo , Ratas , Ratas Wistar , Retículo Sarcoplasmático/metabolismo , Serina-Treonina Quinasas TOR
18.
Acta Physiol (Oxf) ; 229(1): e13444, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31953990

RESUMEN

AIM: Cardiovascular complications, including cardiac arrhythmias, result in high morbidity and mortality in patients with type-2 diabetes mellitus (T2DM). Clinical and experimental data suggest electrophysiological impairment of the natural pacemaker of the diabetic heart. The present study examined sinoatrial node (SAN) arrhythmias in a mouse model of T2DM and physiologically probed their underlying cause. METHODS: Electrocardiograms were obtained from conscious diabetic db/db and lean control db/+ mice. In vivo SAN function was probed through pharmacological autonomic modulation with isoprenaline, atropine and carbachol. Blood pressure stability and heart rate variability (HRV) were evaluated. Intrinsic SAN function was evaluated through ex vivo imaging of spontaneous Ca2+ transients in isolated SAN preparations. RESULTS: While lean control mice showed constant RR intervals during isoprenaline challenge, the diabetic mice experienced SAN arrhythmias with large RR fluctuations in a dose-dependent manner. These arrhythmias were completely abolished by atropine pre-treatment, while carbachol pretreatment significantly increased SAN arrhythmia frequency in the diabetic mice. Blood pressure and HRV were comparable in db/db and db/+ mice, suggesting that neither augmented baroreceptor feedback nor autonomic neuropathy is a likely arrhythmia mechanism. Cycle length response to isoprenaline was comparable in isolated SAN preparations from db/db and db/+ mice; however, Ca2+ spark frequency was significantly increased in db/db mice compared to db/+ at baseline and after isoprenaline. CONCLUSION: Our results demonstrate a dysfunction of cardiac pacemaking in an animal model of T2DM upon challenge with a ß-adrenergic agonist. Ex vivo, higher Ca2+ spark frequency is present in diabetic mice, which may be directly linked to in vivo arrhythmias.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Adrenérgicos/farmacología , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/fisiopatología , Diabetes Mellitus Experimental/complicaciones , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/fisiopatología , Animales , Diabetes Mellitus Experimental/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratones
19.
Pharmacol Rep ; 61(1): 146-53, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19307703

RESUMEN

The cyclic AMP (cAMP)-binding proteins, Epac, are guanine nucleotide exchange factors for the Ras-like small GTPases. Since their discovery in 1998 and with the development of specific Epac agonists, many data in the literature have illustrated their critical role in multiple cellular events mediated by the second messenger cAMP. Given the importance of cAMP in cardiovascular physiology and physiopathology, there is a growing interest to delineate the role of these multi-domain Epac in the cardiovascular system. This review will focus on recent pharmacological and biochemical studies aiming at understanding the role of Epac in cardiomyocyte signaling and hypertrophy.


Asunto(s)
AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Humanos , Hipertrofia/metabolismo , Transducción de Señal
20.
Front Physiol ; 10: 40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30792662

RESUMEN

Cardiovascular complications are the primary death cause in type 2 diabetes, where inflammation can play a role. We, and others, have previously shown that, in diabetic cardiomyopathy, cardiac dysfunction is associated with Ca2+ mishandling. It is possible that diabetic cardiomyopathy differently affects men and women, as the latter present higher risk to develop heart failure and a higher plasmatic level of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα), than men. However, the gender-dependent regulation of Ca2+ signaling in diabetes and its relationship with TNFα signaling are still unclear. Here, we analyzed TNFα signaling pathway and its role in Ca2+ signaling dysfunction in male and female rodent models of type 2 diabetes linked to obesity (db/db mice) using confocal microscopy in freshly isolated cardiomyocytes. TNFα increased [Ca2+]i transient amplitude and accelerated its decay without affecting SR Ca2+ load or Ca2+ spark frequency in cells from control mice. All TNFα effects on Ca2+ handling were prevented by the inhibition of the ceramidase and the phospholipase A2 (PLA2). While the plasmatic level of TNFα was similar in male and female db/db mice, only male db/db hearts over-expressed both TNFα converting enzyme (TACE) and the protective TNFα receptors 2 (TNF-R2). TNFα receptor 1 (TNF-R1) expression, involved in negative inotropic response of TNFα, was unchanged in both male and female db/db mice compared to controls. We found that male db/db mice cardiomyocytes presented a decrease in [Ca2+]i transient amplitude associated to a drop of sarcoplasmic reticulum Ca2+ load, not seen in female db/db mice. Interestingly, sustained incubation with TNFα did not restored Ca2+ signaling alteration observed in male db/db mice but still induces an increase in Ca2+ spark frequency as seen in control littermates. In cardiomyocytes from female db/db mice, TNFα had no visible effects on Ca2+ handling. In conclusion, our study shows that the alteration of Ca2+ signaling and TNFα, seen in db/db mice, is gender specific presenting an increase in TNFα cardio-protective pathway in male mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA