Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Asunto de la revista
Intervalo de año de publicación
1.
Dev Dyn ; 246(11): 812-826, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28249357

RESUMEN

BACKGROUND: Comparative studies beyond the traditional model organisms have been instrumental in enhancing our understanding of the conserved and derived features of gastrulation, a fundamental process in which the germ layers are specified and shaped to form the body axis. Here, we analyzed gastrulation in a vertebrate group with an extreme mode of early development, the annual killifish. RESULTS: Gastrulation in annual killifish of the genus Austrolebias takes place after the initially dispersed deep blastomeres congregate to form the so-called reaggregate. Cells from the early reaggregate do not appear to form part of any recognizable axial embryonic structure and are possibly extraembryonic. In contrast, later reaggregate cells become engaged in morphogenetic transformations indicative of a process of gastrulation and axis formation. The expression of brachyury and goosecoid suggests that gastrulation takes place in a compressed blastopore-like structure with an organizer region displaced to one end. No collective cell internalization proper of blastopore architecture is observed, though, and it appears that gastrulation primarily involves the reorganization of individual cells. CONCLUSIONS: The unique mode of gastrulation in annual killifish demonstrates that a process so ancient and fundamental to ontogenesis can have striking morphogenetic variations nonpredicted from the sole examination of model species. Developmental Dynamics 246:812-826, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Fundulidae/embriología , Gastrulación , Estratos Germinativos/citología , Animales , Embrión no Mamífero , Proteínas Fetales , Fundulidae/fisiología , Estratos Germinativos/crecimiento & desarrollo , Estratos Germinativos/metabolismo , Proteína Goosecoide , Proteínas de Dominio T Box
2.
Dev Dyn ; 241(7): 1143-54, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22539261

RESUMEN

Vertebrate sensory organs originate from both cranial neural crest cells (CNCCs) and placodes. Previously, we have shown that the olfactory placode (OP) forms from a large field of cells extending caudally to the premigratory neural crest domain, and that OPs form through cell movements and not cell division. Concurrent with OP formation, CNCCs migrate rostrally to populate the frontal mass. However, little is known about the interactions between CNCCs and the placodes that form the olfactory sensory system. Previous reports suggest that the OP can generate cell types more typical of neural crest lineages such as neuroendocrine cells and glia, thus marking the OP as an unusual sensory placode. One possible explanation for this exception is that the neural crest origin of glia and neurons has been overlooked due to the intimate association of these two fields during migration. Using molecular markers and live imaging, we followed the development of OP precursors and of dorsally migrating CNCCs in zebrafish embryos. We generated a six4b:mCherry line (OP precursors) that, with a sox10:EGFP line (CNCCs), was used to follow cell migration. Our analyses showed that CNCCs associate with and eventually surround the forming OP with limited cell mixing occurring during this process.


Asunto(s)
Vías Olfatorias/citología , Animales , Animales Modificados Genéticamente , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Cresta Neural/citología , Cresta Neural/metabolismo , Vías Olfatorias/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Biol Res ; 40(2): 251-66, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18064361

RESUMEN

Protein kinase CK1 is a ser/thr protein kinase family which has been identified in the cytosol cell fraction, associated with membranes as well as in the nucleus. Several isoforms of this gene family have been described in various organisms: CK1alpha, CK1beta, CK1delta, CK1epsilon and CK1gamma. Over the last decade, several members of this family have been involved in development processes related to wnt and sonic hedgehog signalling pathways. However, there is no detailed temporal information on the CK1 family in embryonic stages, even though orthologous genes have been described in several different vertebrate species. In this study, we describe for the first time the cloning and detailed expression pattern of five CK1 zebrafish genes. Sequence analysis revealed that zebrafish CK1 proteins are highly homologous to other vertebrate orthologues. Zebrafish CK1 genes are expressed throughout development in common and different territories. All the genes studied in development show maternal and zygotic expression with the exception of CK1epsilon. This last gene presents only a zygotic component of expression. In early stages of development CK1 genes are ubiquitously expressed with the exception of CK1epsilon. In later stages the five CK1 genes are expressed in the brain but not in the same way. This observation probably implicates the CK1 family genes in different and also in redundant functions. This is the first time that a detailed comparison of the expression of CK1 family genes is directly assessed in a vertebrate system throughout development.


Asunto(s)
Quinasa de la Caseína I/genética , Regulación del Desarrollo de la Expresión Génica , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo , Quinasa de la Caseína I/metabolismo , Clonación Molecular , Cartilla de ADN , Perfilación de la Expresión Génica , Hibridación in Situ , Datos de Secuencia Molecular , Filogenia , ARN Mensajero , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Pez Cebra/genética
4.
Biol. Res ; 40(2): 251-266, 2007. ilus
Artículo en Inglés | LILACS | ID: lil-468195

RESUMEN

Protein kinase CK1 is a ser/thr protein kinase family which has been identified in the cytosol cell fraction, associated with membranes as well as in the nucleus. Several isoforms of this gene family have been described in various organisms: CK1 , CK1á, CK1δ, CK1å and CK1γ. Over the last decade, several members of this family have been involved in development processes related to wnt and sonic hedgehog signalling pathways. However, there is no detailed temporal information on the CK1 family in embryonic stages, even though orthologous genes have been described in several different vertebrate species. In this study, we describe for the first time the cloning and detailed expression pattern of five CK1 zebrafish genes. Sequence analysis revealed that zebrafish CK1 proteins are highly homologous to other vertebrate orthologues. Zebrafish CK1 genes are expressed throughout development in common and different territories. All the genes studied in development show maternal and zygotic expression with the exception of CK1å. This last gene presents only a zygotic component of expression. In early stages of development CK1 genes are ubiquitously expressed with the exception of CK1å. In later stages the five CK1 genes are expressed in the brain but not in the same way. This observation probably implicates the CK1 family genes in different and also in redundant functions. This is the first time that a detailed comparison of the expression of CK1 family genes is directly assessed in a vertebrate system throughout development.


Asunto(s)
Animales , Quinasa de la Caseína I/genética , Regulación del Desarrollo de la Expresión Génica , Pez Cebra/embriología , Secuencia de Aminoácidos , Tipificación del Cuerpo , Clonación Molecular , Quinasa de la Caseína I/metabolismo , Cartilla de ADN , Perfilación de la Expresión Génica , Hibridación in Situ , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ARN Mensajero , Alineación de Secuencia , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA