Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Physiol ; 61(6): 1028-1040, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32311031

RESUMEN

Cellular homeostasis is maintained by the proteasomal degradation of regulatory and misfolded proteins, which sustains the amino acid pool. Although proteasomes alleviate stress by removing damaged proteins, mounting evidence indicates that severe stress caused by salt, metal(oids), and some pathogens can impair the proteasome. However, the consequences of proteasome inhibition in plants are not well understood and even less is known about how its malfunctioning alters metabolic activities. Lethality causes by proteasome inhibition in non-photosynthetic organisms stem from amino acid depletion, and we hypothesized that plants respond to proteasome inhibition by increasing amino acid biosynthesis. To address these questions, the short-term effects of proteasome inhibition were monitored for 3, 8 and 48 h in the roots of Brassica napus treated with the proteasome inhibitor MG132. Proteasome inhibition did not affect the pool of free amino acids after 48 h, which was attributed to elevated de novo amino acid synthesis; these observations coincided with increased levels of sulfite reductase and nitrate reductase activities at earlier time points. However, elevated amino acid synthesis failed to fully restore protein synthesis. In addition, transcriptome analysis points to perturbed abscisic acid signaling and decreased sugar metabolism after 8 h of proteasome inhibition. Proteasome inhibition increased the levels of alternative oxidase but decreased aconitase activity, most sugars and tricarboxylic acid metabolites in root tissue after 48 h. These metabolic responses occurred before we observed an accumulation of reactive oxygen species. We discuss how the metabolic response to proteasome inhibition and abiotic stress partially overlap in plants.


Asunto(s)
Aminoácidos/biosíntesis , Brassica napus/metabolismo , Raíces de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Adenosina Trifosfato/metabolismo , Brassica napus/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , Respiración de la Célula , Dimetilsulfóxido/farmacología , Glutamato-Amoníaco Ligasa/metabolismo , Consumo de Oxígeno , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA