Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Pathol ; 263(4-5): 429-441, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837231

RESUMEN

The Ppy gene encodes pancreatic polypeptide (PP) secreted by PP- or γ-cells, which are a subtype of endocrine cells localised mainly in the islet periphery. For a detailed characterisation of PP cells, we aimed to establish PP cell lines. To this end, we generated a mouse model harbouring the SV40 large T antigen (TAg) in the Rosa26 locus, which is expressed upon Ppy-promoter-mediated Cre-loxP recombination. Whereas Insulin1-CreERT-mediated TAg expression in beta cells resulted in insulinoma, surprisingly, Ppy-Cre-mediated TAg expression resulted in the malignant transformation of Ppy-lineage cells. These mice showed distorted islet structural integrity at 5 days of age compared with normal islets. CK19+ duct-like lesions contiguous with the islets were observed at 2 weeks of age, and mice developed aggressive pancreatic ductal adenocarcinoma (PDAC) at 4 weeks of age, suggesting that PDAC can originate from the islet/endocrine pancreas. This was unexpected as PDAC is believed to originate from the exocrine pancreas. RNA-sequencing analysis of Ppy-lineage islet cells from 7-day-old TAg+ mice showed a downregulation and an upregulation of endocrine and exocrine genes, respectively, in addition to the upregulation of genes and pathways associated with PDAC. These results suggest that the expression of an oncogene in Ppy-lineage cells induces a switch from endocrine cell fate to PDAC. Our findings demonstrate that Ppy-lineage cells may be an origin of PDAC and may provide novel insights into the pathogenesis of pancreatic cancer, as well as possible therapeutic strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Ductal Pancreático , Linaje de la Célula , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ratones , Ratones Transgénicos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/metabolismo , Islotes Pancreáticos/patología , Islotes Pancreáticos/metabolismo , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos
2.
PLoS One ; 17(8): e0269958, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35976945

RESUMEN

Pancreatic polypeptide (PP), secreted from γ cells of the islets of Langerhans, is a 36 amino-acid peptide encoded by the Ppy gene. Although previous studies have reported that PP causes a decrease in appetite, the molecular mechanism that regulates PP secretion has not been fully elucidated. Lack of understanding of the regulatory mechanism of PP secretion may be partially owing to the lack of assay systems that can specifically detect PP. We recently developed the mouse monoclonal antibody 23-2D3 that specifically recognizes PP. In the present study, we developed a sandwich enzyme-linked immunosorbent assay for the measurement of mouse PP, and directly monitored intracellular Ca2+ concentrations in Ppy-expressing cells from a newly developed reporter mouse. Using these systems, we identified agonists, such as carbachol and glucose-dependent insulinotropic polypeptide (GIP), which stimulate PP secretion. We further demonstrated that, unlike the case of GIP-induced insulin secretion from ß cells, there is a unique mechanism by which PP secretion is triggered by an increase in intracellular Ca2+ concentrations via voltage-dependent calcium channels even in low-glucose conditions.


Asunto(s)
Islotes Pancreáticos , Polipéptido Pancreático , Animales , Calcio , Ensayo de Inmunoadsorción Enzimática , Polipéptido Inhibidor Gástrico/farmacología , Glucosa/farmacología , Insulina , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA