Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Amino Acids ; 55(6): 821-833, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37171719

RESUMEN

Histamine is a biogenic amine implicated in various biological and pathological processes. Convenient cellular models are needed to screen and develop new antihistamine agents. This report aimed to characterize the response of neurons differentiated from mouse P19 embryonal carcinoma cells to histamine treatment, and to investigate the modulation of this response by antihistamine drugs, vegetal diamine oxidase, and catalase. The exposure of P19 neurons to histamine reduced cell viability to 65% maximally. This effect involves specific histamine receptors, since it was prevented by treatment with desloratadine and cimetidine, respectively, H1 and H2 antagonists, but not by the H3 antagonist ciproxifan. RT-PCR analysis showed that P19 neurons express H1 and H2 receptors, and the H3 receptor, although it seemed not involved in the histamine effect on these cells. The H4 receptor was not expressed. H1 and H2 antagonists as well as vegetal diamine oxidase diminished the intracellular Ca2+ mobilization triggered by histamine. The treatment with vegetal diamine oxidase or catalase protected against mortality and a significant reduction of H2O2 level, generated from the cells under the histamine action, was found upon treatments with desloratadine, cimetidine, vegetal diamine oxidase, or catalase. Overall, the results indicate the expression of functional histamine receptors and open the possibility of using P19 neurons as model system to study the roles of histamine and related drugs in neuronal pathogenesis. This model is less expensive to operate and can be easily implemented by current laboratories of analysis and by Contract Research Organizations.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Productos Biológicos , Animales , Ratones , Histamina/farmacología , Histamina/metabolismo , Cimetidina/farmacología , Catalasa , Peróxido de Hidrógeno/farmacología , Antagonistas de los Receptores Histamínicos/farmacología , Receptores Histamínicos/genética , Antagonistas de los Receptores Histamínicos H1/farmacología , Neuronas/metabolismo , Productos Biológicos/farmacología
2.
J Inorg Biochem ; 247: 112334, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499466

RESUMEN

The deregulation of copper homoeostasis can promote various diseases such as Menkes disease or hypertrophic cardioencephalomyopathy. We have recently synthesized solid copper(II) complexes ([Cu(His)2Cl2] and [Cu(Ser)2]), stable in physiological media and with potential as therapeutic agents. This report describes: i) the biocompatibility of these complexes at concentrations up to 100 µM using a differentiated Caco-2 cells model; ii) their transport across the intestinal epithelium using a transepithelial resistance assay and monitoring the amount of copper complexes at the apical and basolateral sides of the cells. The results suggest that the flow occurs through paracellular routes. The intracellular copper retention was <2.7% with no significant differences in intracellular copper content between 6 h and 48 h, suggesting an early copper retention process. Furthermore, this is the first evidence that demonstrates [Cu(His)2Cl2] and [Cu(Ser)2] induce transcriptional downregulation of the four major copper transporters (CTR1, DMT1, ATP7A, ATP7B), and the upregulation of the metallothionein gene expression. A remarkable finding was the increase in cytochrome c oxidase activity observed after the treatment of differentiated Caco-2 cells with copper(II) complexes at concentrations of 50-100 µM. The understanding of the transport mechanisms of these copper(II) complexes across the intestinal epithelium and of their subsequent biological activities could contribute to the development of optimal pharmaceutical formulations for the therapy of copper deficiency-related diseases.


Asunto(s)
Proteínas de Transporte de Catión , Cobre , Humanos , Cobre/farmacología , Células CACO-2 , Enfermedades Raras/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Mucosa Intestinal/metabolismo , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo
3.
J Inorg Biochem ; 192: 87-97, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30616069

RESUMEN

Copper coordinated with amino acid residues is essential for the function of many proteins. In addition, copper complexed to free l-Histidine, as [Cu(His)2], is used in the treatment of the neurodegenerative Menkes disease and of cardioencephalomyopathy. This study was aimed to coordinate copper(II) with four small ligands (l-Serine, l-Histidine, Urea and Biuret) and to evaluate structural features, stability, antioxidant activity and neuronal compatibility of the resulting complexes. All complexes were synthesized with CuCl2 and purified by precipitation in alcohol. Elemental composition, X-rays diffraction and FTIR indicated that the complexes were in form of [Cu(ligand)2] and exhibited tridentate (l-Histidine), bidentate (l-Serine and Biuret) or monodentate (Urea) coordination with copper. UV-Vis absorbance profiles in physiologically relevant solutions and cyclic voltammetry revealed that, contrarily to [Cu(Urea)2Cl2] and [Cu(Biuret)2Cl2], the [Cu(Ser)2] and [Cu(His)2Cl2] complexes were stable in different media including water, physiological saline and intestinal-like solutions. All complexes and their ligands had antioxidant capacity as evaluated by DPPH (1,1-diphenyl-2,2-picrylhydrazyl) and DPD (N,N-diethyl-p-phenylenediamine) methods, and the [Cu(His)2Cl2] complex was the most potent. Neuronal compatibility was assessed through cell viability measurements using cultured neurons derived from mouse P19 stem cells. Although only [Cu(His)2Cl2] showed a good neurocompatibility (about 90% at concentrations up to 200 µM), the cytotoxicity of the other copper complexes was lower compared to equivalent concentrations of CuCl2. These findings open new perspectives for the use of these copper complexes as antioxidants and possibly as therapeutic agents for neurodegenerative diseases. Furthermore, study of these complexes may help to improve chelation therapy for copper dysfunctions.


Asunto(s)
Complejos de Coordinación , Cobre , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/metabolismo , Animales , Línea Celular , Supervivencia Celular , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacocinética , Complejos de Coordinación/farmacología , Cobre/química , Cobre/farmacocinética , Cobre/farmacología , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA