Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1828(2): 743-57, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23063656

RESUMEN

A membrane-embedded curdlan synthase (CrdS) from Agrobacterium is believed to catalyse a repetitive addition of glucosyl residues from UDP-glucose to produce the (1,3)-ß-d-glucan (curdlan) polymer. We report wheat germ cell-free protein synthesis (WG-CFPS) of full-length CrdS containing a 6xHis affinity tag and either Factor Xa or Tobacco Etch Virus proteolytic sites, using a variety of hydrophobic membrane-mimicking environments. Full-length CrdS was synthesised with no variations in primary structure, following analysis of tryptic fragments by MALDI-TOF/TOF Mass Spectrometry. Preparative scale WG-CFPS in dialysis mode with Brij-58 yielded CrdS in mg/ml quantities. Analysis of structural and functional properties of CrdS during protein synthesis showed that CrdS was co-translationally inserted in DMPC liposomes during WG-CFPS, and these liposomes could be purified in a single step by density gradient floatation. Incorporated CrdS exhibited a random orientation topology. Following affinity purification of CrdS, the protein was reconstituted in nanodiscs with Escherichia coli lipids or POPC and a membrane scaffold protein MSP1E3D1. CrdS nanodiscs were characterised by small-angle X-ray scattering using synchrotron radiation and the data obtained were consistent with insertion of CrdS into bilayers. We found CrdS synthesised in the presence of the Ac-AAAAAAD surfactant peptide or co-translationally inserted in liposomes made from E. coli lipids to be catalytically competent. Conversely, CrdS synthesised with only Brij-58 was inactive. Our findings pave the way for future structural studies of this industrially important catalytic membrane protein.


Asunto(s)
Glucosiltransferasas/química , Liposomas/química , Nanopartículas/química , Nanotecnología/métodos , beta-Glucanos/química , Agrobacterium/metabolismo , Catálisis , Sistema Libre de Células , Escherichia coli/metabolismo , Glucosa/química , Microscopía Electrónica de Transmisión/métodos , Péptidos/química , Plásmidos/metabolismo , Biosíntesis de Proteínas , Proteínas/química , ARN Mensajero/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tensoactivos/química , Tripsina/química , Uridina Difosfato/química
2.
Sci Rep ; 12(1): 21634, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517509

RESUMEN

Intronic polymorphic TOMM40 variants increasing TOMM40 mRNA expression are strongly correlated to late onset Alzheimer's Disease. The gene product, hTomm40, encoded in the APOE gene cluster, is a core component of TOM, the translocase that imports nascent proteins across the mitochondrial outer membrane. We used Drosophila melanogaster eyes as an in vivo model to investigate the relationship between elevated Tom40 (the Drosophila homologue of hTomm40) expression and neurodegeneration. Here we provide evidence that an overabundance of Tom40 in mitochondria invokes caspase-dependent cell death in a dose-dependent manner, leading to degeneration of the primarily neuronal eye tissue. Degeneration is contingent on the availability of co-assembling TOM components, indicating that an increase in assembled TOM is the factor that triggers apoptosis and degeneration in a neural setting. Eye death is not contingent on inner membrane translocase components, suggesting it is unlikely to be a direct consequence of impaired import. Another effect of heightened Tom40 expression is upregulation and co-association of a mitochondrial oxidative stress biomarker, DmHsp22, implicated in extension of lifespan, providing new insight into the balance between cell survival and death. Activation of regulated death pathways, culminating in eye degeneration, suggests a possible causal route from TOMM40 polymorphisms to neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Proteínas de Saccharomyces cerevisiae , Animales , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Apoptosis/genética , Proteínas Portadoras/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nat Commun ; 13(1): 490, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35079013

RESUMEN

Ion currents through potassium channels are gated. Constriction of the ion conduction pathway at the inner helix bundle, the textbook gate of Kir potassium channels, has been shown to be an ineffective permeation control, creating a rift in our understanding of how these channels are gated. Here we present evidence that anionic lipids act as interactive response elements sufficient to gate potassium conduction. We demonstrate the limiting barrier to K+ permeation lies within the ion conduction pathway and show that this gate is operated by the fatty acyl tails of lipids that infiltrate the conduction pathway via fenestrations in the walls of the pore. Acyl tails occupying a surface groove extending from the cytosolic interface to the conduction pathway provide a potential means of relaying cellular signals, mediated by anionic lipid head groups bound at the canonical lipid binding site, to the internal gate.


Asunto(s)
Activación del Canal Iónico , Lípidos de la Membrana/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potasio/metabolismo , Aniones/química , Aniones/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Transporte Iónico , Liposomas/química , Liposomas/metabolismo , Lípidos de la Membrana/química , Simulación de Dinámica Molecular , Mutación , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA