Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Cell Sci ; 134(3)2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33443102

RESUMEN

KRIT1 is a scaffolding protein that regulates multiple molecular mechanisms, including cell-cell and cell-matrix adhesion, and redox homeostasis and signaling. However, rather little is known about how KRIT1 is itself regulated. KRIT1 is found in both the cytoplasm and the nucleus, yet the upstream signaling proteins and mechanisms that regulate KRIT1 nucleocytoplasmic shuttling are not well understood. Here, we identify a key role for protein kinase C (PKC) in this process. In particular, we found that PKC activation promotes the redox-dependent cytoplasmic localization of KRIT1, whereas inhibition of PKC or treatment with the antioxidant N-acetylcysteine leads to KRIT1 nuclear accumulation. Moreover, we demonstrated that the N-terminal region of KRIT1 is crucial for the ability of PKC to regulate KRIT1 nucleocytoplasmic shuttling, and may be a target for PKC-dependent regulatory phosphorylation events. Finally, we found that silencing of PKCα, but not PKCδ, inhibits phorbol 12-myristate 13-acetate (PMA)-induced cytoplasmic enrichment of KRIT1, suggesting a major role for PKCα in regulating KRIT1 nucleocytoplasmic shuttling. Overall, our findings identify PKCα as a novel regulator of KRIT1 subcellular compartmentalization, thus shedding new light on the physiopathological functions of this protein.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteína KRIT1/metabolismo , Proteína Quinasa C-alfa , Células HeLa , Humanos , Fosforilación , Proteína Quinasa C-alfa/genética , Acetato de Tetradecanoilforbol
2.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36498972

RESUMEN

BACKGROUND: Cerebral cavernous malformations (CCMs) are a major type of cerebrovascular lesions of proven genetic origin that occur in either sporadic (sCCM) or familial (fCCM) forms, the latter being inherited as an autosomal dominant condition linked to loss-of-function mutations in three known CCM genes. In contrast to fCCMs, sCCMs are rarely linked to mutations in CCM genes and are instead commonly and peculiarly associated with developmental venous anomalies (DVAs), suggesting distinct origins and common pathogenic mechanisms. CASE REPORT: A hemorrhagic sCCM in the right frontal lobe of the brain was surgically excised from a symptomatic 3 year old patient, preserving intact and pervious the associated DVA. MRI follow-up examination performed periodically up to 15 years after neurosurgery intervention demonstrated complete removal of the CCM lesion and no residual or relapse signs. However, 18 years after surgery, the patient experienced acute episodes of paresthesia due to a distant recurrence of a new hemorrhagic CCM lesion located within the same area as the previous one. A new surgical intervention was, therefore, necessary, which was again limited to the CCM without affecting the pre-existing DVA. Subsequent follow-up examination by contrast-enhanced MRI evidenced a persistent pattern of signal-intensity abnormalities in the bed of the DVA, including hyperintense gliotic areas, suggesting chronic inflammatory conditions. CONCLUSIONS: This case report highlights the possibility of long-term distant recurrence of hemorrhagic sCCMs associated with a DVA, suggesting that such recurrence is secondary to focal sterile inflammatory conditions generated by the DVA.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Preescolar , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/cirugía , Recurrencia Local de Neoplasia , Imagen por Resonancia Magnética , Encéfalo/patología , Mutación
3.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232456

RESUMEN

KRIT1 loss-of-function mutations underlie the pathogenesis of Cerebral Cavernous Malformation (CCM), a major vascular disease affecting the central nervous system (CNS). However, KRIT1 is also expressed outside the CNS and modulates key regulators of metabolic and oxy-inflammatory pathways, including the master transcription factor FoxO1, suggesting a widespread functional significance. Herein, we show that the KRIT1/FoxO1 axis is implicated in liver metabolic functions and antioxidative/antiglycative defenses. Indeed, by performing comparative studies in KRIT1 heterozygous (KRIT1+/-) and wild-type mice, we found that KRIT1 haploinsufficiency resulted in FoxO1 expression/activity downregulation in the liver, and affected hepatic FoxO1-dependent signaling pathways, which are markers of major metabolic processes, including gluconeogenesis, glycolysis, mitochondrial respiration, and glycogen synthesis. Moreover, it caused sustained activation of the master antioxidant transcription factor Nrf2, hepatic accumulation of advanced glycation end-products (AGEs), and abnormal expression/activity of AGE receptors and detoxifying systems. Furthermore, it was associated with an impairment of food intake, systemic glucose disposal, and plasma levels of insulin. Specific molecular alterations detected in the liver of KRIT1+/- mice were also confirmed in KRIT1 knockout cells. Overall, our findings demonstrated, for the first time, that KRIT1 haploinsufficiency affects glucose homeostasis and liver metabolic and antioxidative/antiglycative functions, thus inspiring future basic and translational studies.


Asunto(s)
Insulinas , Factor 2 Relacionado con NF-E2 , Animales , Antioxidantes , Glucosa , Glucógeno , Proteína KRIT1 , Hígado , Ratones , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/genética
4.
Int J Mol Sci ; 20(19)2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31590384

RESUMEN

Loss-of-function mutations of the gene encoding Krev interaction trapped protein 1 (KRIT1) are associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries and affecting 0.5% of the human population. However, growing evidence demonstrates that KRIT1 is implicated in the modulation of major redox-sensitive signaling pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, suggesting that its loss-of-function mutations may have pathological effects not limited to CCM disease. The aim of this study was to address whether KRIT1 loss-of-function predisposes to the development of pathological conditions associated with enhanced endothelial cell susceptibility to oxidative stress and inflammation, such as arterial endothelial dysfunction (ED) and atherosclerosis. Silencing of KRIT1 in human aortic endothelial cells (HAECs), coronary artery endothelial cells (HCAECs), and umbilical vein endothelial cells (HUVECs) resulted in increased expression of endothelial proinflammatory adhesion molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) and in enhanced susceptibility to tumor necrosis factor alpha (TNF-α)-induced apoptosis. These effects were associated with a downregulation of Notch1 activation that could be rescued by antioxidant treatment, suggesting that they are consequent to altered intracellular redox homeostasis induced by KRIT1 loss-of-function. Furthermore, analysis of the aorta of heterozygous KRIT1+/- mice fed a high-fructose diet to induce systemic oxidative stress and inflammation demonstrated a 1.6-fold increased expression of VCAM-1 and an approximately 2-fold enhanced fat accumulation (7.5% vs 3.6%) in atherosclerosis-prone regions, including the aortic arch and aortic root, as compared to corresponding wild-type littermates. In conclusion, we found that KRIT1 deficiency promotes ED, suggesting that, besides CCM, KRIT1 may be implicated in genetic susceptibility to the development of atherosclerotic lesions.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/genética , Endotelio Vascular/metabolismo , Proteína KRIT1/genética , Mutación con Pérdida de Función , Animales , Aorta/patología , Apoptosis , Aterosclerosis/metabolismo , Endotelio Vascular/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Proteína KRIT1/deficiencia , Proteína KRIT1/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Receptor Notch1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
5.
Antioxid Redox Signal ; 38(7-9): 496-528, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36047808

RESUMEN

Significance: KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers. Recent Advances: Among the multiple regulatory mechanisms proposed so far, significant evidence accumulated over the past decade has clearly shown that the role of KRIT1 in the stability of endothelial barriers, including the blood-brain barrier, is largely based on its involvement in the complex machinery governing cellular redox homeostasis and responses to oxidative stress and inflammation. KRIT1 loss-of-function has, indeed, been demonstrated to cause an impairment of major redox-sensitive mechanisms involved in spatiotemporal regulation of cell adhesion and signaling, which ultimately leads to decreased cell-cell junction stability and enhanced sensitivity to oxidative stress and inflammation. Critical Issues: This review explores the redox mechanisms that influence endothelial cell adhesion and barrier function, focusing on the role of KRIT1 in such mechanisms. We propose that this supports a novel model wherein redox signaling forms the common link between the various pathogenetic mechanisms and therapeutic approaches hitherto associated with CCM disease. Future Directions: A comprehensive characterization of the role of KRIT1 in redox control of endothelial barrier physiology and defense against oxy-inflammatory insults will provide valuable insights into the development of precision medicine strategies. Antioxid. Redox Signal. 38, 496-528.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal , Oxidación-Reducción , Inflamación , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína KRIT1/metabolismo
6.
Biomedicines ; 11(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36831015

RESUMEN

Cerebral cavernous malformation (CCM) or cavernoma is a major vascular disease of genetic origin, whose main phenotypes occur in the central nervous system, and is currently devoid of pharmacological therapeutic strategies. Cavernomas can remain asymptomatic during a lifetime or manifest with a wide range of symptoms, including recurrent headaches, seizures, strokes, and intracerebral hemorrhages. Loss-of-function mutations in KRIT1/CCM1 are responsible for more than 50% of all familial cases, and have been clearly shown to affect cellular junctions, redox homeostasis, inflammatory responses, and angiogenesis. In this study, we investigated the therapeutic effects of multidrug-loaded lipid nanoemulsions in rescuing the pathological phenotype of CCM disease. The pro-autophagic rapamycin, antioxidant avenanthramide, and antiangiogenic bevacizumab were loaded into nanoemulsions, with the aim of reducing the major molecular dysfunctions associated with cavernomas. Through Western blot analysis of biomarkers in an in vitro CCM model, we demonstrated that drug-loaded lipid nanoemulsions rescue antioxidant responses, reactivate autophagy, and reduce the effect of pro-angiogenic factors better than the free drugs. Our results show the importance of developing a combinatorial preventive and therapeutic approach to reduce the risk of lesion formation and inhibit or completely revert the multiple hallmarks that characterize the pathogenesis and progression of cavernomas.

7.
Antioxidants (Basel) ; 11(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35883785

RESUMEN

Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin that predisposes to seizures, focal neurological deficits and fatal intracerebral hemorrhage. It may occur sporadically or in familial forms, segregating as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. Its pathogenesis has been associated with loss-of-function mutations in three genes, namely KRIT1 (CCM1), CCM2 and PDCD10 (CCM3), which are implicated in defense mechanisms against oxidative stress and inflammation. Herein, we screened 21 Italian CCM cases using clinical exome sequencing and found six cases (~29%) with pathogenic variants in CCM genes, including a large 145−256 kb genomic deletion spanning the KRIT1 gene and flanking regions, and the KRIT1 c.1664C>T variant, which we demonstrated to activate a donor splice site in exon 16. The segregation of this cryptic splicing mutation was studied in a large Italian family (five affected and seven unaffected cases), and showed a largely heterogeneous clinical presentation, suggesting the implication of genetic modifiers. Moreover, by analyzing ad hoc gene panels, including a virtual panel of 23 cerebrovascular disease-related genes (Cerebro panel), we found two variants in NOTCH3 and PTEN genes, which could contribute to the abnormal oxidative stress and inflammatory responses to date implicated in CCM disease pathogenesis.

8.
Free Radic Biol Med ; 172: 403-417, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34175437

RESUMEN

Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity. Three disease genes have been identified: KRIT1 (CCM1), CCM2 and CCM3. Previous results demonstrated that loss-of-function mutations of CCM genes cause pleiotropic effects, including defective autophagy, altered reactive oxygen species (ROS) homeostasis, and enhanced sensitivity to oxidative stress and inflammatory events, suggesting a novel unifying pathogenetic mechanism, and raising the possibility that CCM disease onset and severity are influenced by the presence of susceptibility and modifier genes. Consistently, genome-wide association studies (GWAS) in large and homogeneous cohorts of patients sharing the familial form of CCM disease and identical mutations in CCM genes have led to the discovery of distinct genetic modifiers of major disease severity phenotypes, such as development of numerous and large CCM lesions, and susceptibility to ICH. This review deals with the identification of genetic modifiers with a significant impact on inter-individual variability in CCM disease onset and severity, including highly polymorphic genes involved in oxidative stress, inflammatory and immune responses, such as cytochrome P450 monooxygenases (CYP), matrix metalloproteinases (MMP), and Toll-like receptors (TLR), pointing to their emerging prognostic value, and opening up new perspectives for risk stratification and personalized medicine strategies.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Estudio de Asociación del Genoma Completo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Humanos , Inflamación/genética , Proteína KRIT1/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación , Estrés Oxidativo/genética , Polimorfismo Genético
9.
Expert Opin Drug Deliv ; 18(7): 849-876, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33406376

RESUMEN

Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.


Asunto(s)
Trastornos Cerebrovasculares , Hemangioma Cavernoso del Sistema Nervioso Central , Trastornos Cerebrovasculares/diagnóstico , Trastornos Cerebrovasculares/genética , Trastornos Cerebrovasculares/terapia , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/terapia , Humanos , Inflamación , Mutación , Nanomedicina
10.
Methods Mol Biol ; 2152: 451-465, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524573

RESUMEN

Cerebral cavernous malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or can be inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM disease exhibits a range of different phenotypes, including wide interindividual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Mutations of the KRIT1 gene account for over 50% of familial cases. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered homeostasis of intracellular reactive oxygen species (ROS) and abnormal activation of redox-sensitive transcription factors, which collectively result in pro-oxidative, pro-inflammatory, and pro-angiogenic effects, suggesting a novel pathogenic mechanism for CCM disease. Consistently, these original discoveries have been confirmed and extended by subsequent findings showing mechanistic relationships between pleiotropic redox-dependent effects of KRIT1 loss-of-function and enhanced cell sensitivity to oxidative stress, which may eventually lead to cellular dysfunctions and CCM disease pathogenesis. In this chapter, we describe few basic methods used for qualitative and quantitative analysis of intracellular ROS in cellular models of CCM disease.


Asunto(s)
Técnica del Anticuerpo Fluorescente , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Biomarcadores , Línea Celular , Técnica del Anticuerpo Fluorescente/métodos , Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Ratones , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo/genética , Superóxidos/metabolismo
11.
Methods Mol Biol ; 2152: 3-25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524540

RESUMEN

Cerebral cavernous malformation (CCM) is a rare cerebrovascular disorder of genetic origin consisting of closely clustered, abnormally dilated and leaky capillaries (CCM lesions), which occur predominantly in the central nervous system. CCM lesions can be single or multiple and may result in severe clinical symptoms, including focal neurological deficits, seizures, and intracerebral hemorrhage. Early human genetic studies demonstrated that CCM disease is linked to three chromosomal loci and can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity, eventually leading to the identification of three disease genes, CCM1/KRIT1, CCM2, and CCM3/PDCD10, which encode for structurally unrelated intracellular proteins that lack catalytic domains. Biochemical, molecular, and cellular studies then showed that these proteins are involved in endothelial cell-cell junction and blood-brain barrier stability maintenance through the regulation of major cellular structures and mechanisms, including endothelial cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, autophagy, and endothelial-to-mesenchymal transition, suggesting that they act as pleiotropic regulators of cellular homeostasis, and opening novel therapeutic perspectives. Indeed, accumulated evidence in cellular and animal models has eventually revealed that the emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses.In this introductory review, we present a general overview of 20 years of amazing progress in the identification of genetic culprits and molecular mechanisms underlying CCM disease pathogenesis, and the development of targeted therapeutic strategies.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/terapia , Terapia Molecular Dirigida , Alelos , Animales , Biomarcadores , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Estudios de Asociación Genética/métodos , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Humanos , Imagen por Resonancia Magnética , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
12.
Methods Mol Biol ; 2152: 151-167, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524551

RESUMEN

The development of distinct cellular and animal models has allowed the identification and characterization of molecular mechanisms underlying the pathogenesis of cerebral cavernous malformation (CCM) disease. This is a major cerebrovascular disorder of proven genetic origin, affecting 0.5% of the population. Three disease genes have been identified: CCM1/KRIT1, CCM2, and CCM3. These genes encode for proteins implicated in the regulation of major cellular structures and mechanisms, such as cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, and endothelial-to-mesenchymal transition, suggesting that they may act as pleiotropic regulators of cellular homeostasis. Indeed, accumulated evidence in cellular and animal models demonstrates that emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses. In particular, we demonstrated that KRIT1 loss-of-function affects master regulators of cellular redox homeostasis and responses to oxidative stress, including major redox-sensitive transcriptional factors and antioxidant proteins, and autophagy, suggesting that altered redox signaling and oxidative stress contribute to CCM pathogenesis, and opening novel preventive and therapeutic perspectives.In this chapter, we describe materials and methods for isolation of mouse embryonic fibroblast (MEF) cells from homozygous KRIT1-knockout mouse embryos, and their transduction with a lentiviral vector encoding KRIT1 to generate cellular models of CCM disease that contributed significantly to the identification of pathogenetic mechanisms.


Asunto(s)
Fibroblastos/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Proteína KRIT1/genética , Animales , Modelos Animales de Enfermedad , Orden Génico , Marcación de Gen , Sitios Genéticos , Vectores Genéticos/genética , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico , Recombinación Homóloga , Homocigoto , Ratones , Ratones Noqueados , Ratones Transgénicos , Transducción Genética
13.
Antioxidants (Basel) ; 9(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024152

RESUMEN

Dicarbonyl stress is a dysfunctional state consisting in the abnormal accumulation of reactive α-oxaldehydes leading to increased protein modification. In cells, post-translational changes can also occur through S-glutathionylation, a highly conserved oxidative post-translational modification consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue. This review recapitulates the main findings supporting a role for dicarbonyl stress and S-glutathionylation in the pathogenesis of cerebrovascular diseases, with specific emphasis on cerebral cavernous malformations (CCM), a vascular disease of proven genetic origin that may give rise to various clinical signs and symptoms at any age, including recurrent headaches, seizures, focal neurological deficits, and intracerebral hemorrhage. A possible interplay between dicarbonyl stress and S-glutathionylation in CCM is also discussed.

14.
Antioxidants (Basel) ; 9(4)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316584

RESUMEN

Vitamin D deficiency has been clearly linked to major chronic diseases associated with oxidative stress, inflammation, and aging, including cardiovascular and neurodegenerative diseases, diabetes, and cancer. In particular, the cardiovascular system appears to be highly sensitive to vitamin D deficiency, as this may result in endothelial dysfunction and vascular defects via multiple mechanisms. Accordingly, recent research developments have led to the proposal that pharmacological interventions targeting either vitamin D deficiency or its key downstream effects, including defective autophagy and abnormal pro-oxidant and pro-inflammatory responses, may be able to limit the onset and severity of major cerebrovascular diseases, such as stroke and cerebrovascular malformations. Here we review the available evidence supporting the role of vitamin D in preventing or limiting the development of these cerebrovascular diseases, which are leading causes of disability and death all over the world.

15.
Antioxidants (Basel) ; 8(1)2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30658464

RESUMEN

Loss-of-function mutations in the KRIT1 gene are associated with the pathogenesis of cerebral cavernous malformations (CCMs), a major cerebrovascular disease still awaiting therapies. Accumulating evidence demonstrates that KRIT1 plays an important role in major redox-sensitive mechanisms, including transcriptional pathways and autophagy, which play major roles in cellular homeostasis and defense against oxidative stress, raising the possibility that KRIT1 loss has pleiotropic effects on multiple redox-sensitive systems. Using previously established cellular models, we found that KRIT1 loss-of-function affects the glutathione (GSH) redox system, causing a significant decrease in total GSH levels and increase in oxidized glutathione disulfide (GSSG), with a consequent deficit in the GSH/GSSG redox ratio and GSH-mediated antioxidant capacity. Redox proteomic analyses showed that these effects are associated with increased S-glutathionylation of distinct proteins involved in adaptive responses to oxidative stress, including redox-sensitive chaperonins, metabolic enzymes, and cytoskeletal proteins, suggesting a novel molecular signature of KRIT1 loss-of-function. Besides providing further insights into the emerging pleiotropic functions of KRIT1, these findings point definitively to KRIT1 as a major player in redox biology, shedding new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell sensitivity to oxidative stress, which may eventually lead to cellular dysfunctions and CCM disease pathogenesis.

16.
ACS Omega ; 3(11): 15389-15398, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30556006

RESUMEN

Platinum nanoparticles (PtNPs) are antioxidant enzyme-mimetic nanomaterials with significant potential for the treatment of complex diseases related to oxidative stress. Among such diseases, Cerebral Cavernous Malformation (CCM) is a major cerebrovascular disorder of genetic origin, which affects at least 0.5% of the general population. Accumulated evidence indicates that loss-of-function mutations of the three known CCM genes predispose endothelial cells to oxidative stress-mediated dysfunctions by affecting distinct redox-sensitive signaling pathways and mechanisms, including pro-oxidant and antioxidant pathways and autophagy. A multitargeted combinatorial therapy might thereby represent a promising strategy for the effective treatment of this disease. Herein, we developed a multifunctional nanocarrier by combining the radical scavenging activity of PtNPs with the autophagy-stimulating activity of rapamycin (Rapa). Our results show that the combinatorial targeting of redox signaling and autophagy dysfunctions is effective in rescuing major molecular and cellular hallmarks of CCM disease, suggesting its potential for the treatment of this and other oxidative stress-related diseases.

17.
Oxid Med Cell Longev ; 2018: 6015351, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30245775

RESUMEN

Oat (Avena sativa) is a cereal known since antiquity as a useful grain with abundant nutritional and health benefits. It contains distinct molecular components with high antioxidant activity, such as tocopherols, tocotrienols, and flavanoids. In addition, it is a unique source of avenanthramides, phenolic amides containing anthranilic acid and hydroxycinnamic acid moieties, and endowed with major beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects. In this review, we report on the biological activities of avenanthramides and their derivatives, including analogs produced in recombinant yeast, with a major focus on the therapeutic potential of these secondary metabolites in the treatment of aging-related human diseases. Moreover, we also present recent advances pointing to avenanthramides as interesting therapeutic candidates for the treatment of cerebral cavernous malformation (CCM) disease, a major cerebrovascular disorder affecting up to 0.5% of the human population. Finally, we highlight the potential of foodomics and redox proteomics approaches in outlining distinctive molecular pathways and redox protein modifications associated with avenanthramide bioactivities in promoting human health and contrasting the onset and progression of various pathologies. The paper is dedicated to the memory of Adelia Frison.


Asunto(s)
Trastornos Cerebrovasculares/tratamiento farmacológico , Trastornos Cerebrovasculares/prevención & control , Sustancias Protectoras/uso terapéutico , Piel/efectos de los fármacos , ortoaminobenzoatos/uso terapéutico , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Humanos , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacología
18.
Free Radic Biol Med ; 115: 202-218, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29170092

RESUMEN

KRIT1 (CCM1) is a disease gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease of proven genetic origin affecting 0.3-0.5% of the population. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered redox homeostasis and abnormal activation of the redox-sensitive transcription factor c-Jun, which collectively result in pro-oxidative, pro-inflammatory and pro-angiogenic effects, suggesting a novel pathogenic mechanism for CCM disease and raising the possibility that KRIT1 loss-of-function exerts pleiotropic effects on multiple redox-sensitive mechanisms. To address this possibility, we investigated major redox-sensitive pathways and enzymatic systems that play critical roles in fundamental cytoprotective mechanisms of adaptive responses to oxidative stress, including the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), a pivotal stress-responsive defense enzyme involved in cellular protection against glycative and oxidative stress through the metabolism of methylglyoxal (MG). This is a potent post-translational protein modifier that may either contribute to increased oxidative molecular damage and cellular susceptibility to apoptosis, or enhance the activity of major apoptosis-protective proteins, including heat shock proteins (Hsps), promoting cell survival. Experimental outcomes showed that KRIT1 loss-of-function induces a redox-sensitive sustained upregulation of Nrf2 and Glo1, and a drop in intracellular levels of MG-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that counteracts intrinsic oxidative stress but increases susceptibility to oxidative DNA damage and apoptosis, sensitizing cells to further oxidative challenges. While supporting and extending the pleiotropic functions of KRIT1, these findings shed new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell predisposition to oxidative damage, thus providing valuable new insights into CCM pathogenesis and novel options for the development of preventive and therapeutic strategies.


Asunto(s)
Encéfalo/patología , Neoplasias del Sistema Nervioso Central/genética , Células Endoteliales/fisiología , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Proteína KRIT1/genética , Mutación/genética , Estrés Oxidativo/genética , Animales , Apoptosis , Autofagia/genética , Células Cultivadas , Neoplasias del Sistema Nervioso Central/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Homeostasis , Humanos , Proteína KRIT1/metabolismo , Lactoilglutatión Liasa/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Piruvaldehído/metabolismo
19.
Data Brief ; 16: 929-938, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29511711

RESUMEN

This article contains additional data related to the original research article entitled "KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: implication for Cerebral Cavernous Malformation disease" (Antognelli et al., 2017) [1]. Data were obtained by si-RNA-mediated gene silencing, qRT-PCR, immunoblotting, and immunohistochemistry studies, and enzymatic activity and apoptosis assays. Overall, they support, complement and extend original findings demonstrating that KRIT1 loss-of-function induces a redox-sensitive and JNK-dependent sustained upregulation of the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), and a drop in intracellular levels of AP-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that sensitizes cells to oxidative DNA damage and apoptosis. In particular, immunoblotting analyses of Nrf2, Glo1, AP-modified Hsp70 and Hsp27 proteins, HO-1, phospho-c-Jun, phospho-ERK5, and KLF4 expression levels were performed both in KRIT1-knockout MEF cells and in KRIT1-silenced human brain microvascular endothelial cells (hBMEC) treated with the antioxidant Tiron, and compared with control cells. Moreover, immunohistochemistry analysis of Nrf2, Glo1, phospho-JNK, and KLF4 was performed on histological samples of human CCM lesions. Finally, the role of Glo1 in the downregulation of AP-modified Hsp70 and Hsp27 proteins, and the increase in apoptosis susceptibility associated with KRIT1 loss-of-function was addressed by si-RNA-mediated Glo1 gene silencing in KRIT1-knockout MEF cells.

20.
Nutrients ; 10(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149546

RESUMEN

Avenanthramides (Avns), polyphenols found exclusively in oats, are emerging as promising therapeutic candidates for the treatment of several human diseases, including colon cancer. By engineering a Saccharomyces cerevisiae strain, we previously produced two novel phenolic compounds, N-(E)-p-coumaroyl-3-hydroxyanthranilic acid (Yeast avenanthramide I, YAvnI) and N-(E)-caffeoyl-3-hydroxyanthranilic acid (Yeast avenanthramide II, YAvnII), which are endowed with a structural similarity to bioactive oat avenanthramides and stronger antioxidant properties. In this study, we evaluated the ability of these yeast-derived recombinant avenanthramides to inhibit major hallmarks of colon cancer cells, including sustained proliferation, migration and epithelial-mesenchymal transition (EMT). Using the human colon adenocarcinoma cell line HT29, we compared the impact of YAvns and natural Avns, including Avn-A and Avn-C, on colon cancer cells by performing MTT, clonogenic, adhesion, migration, and anchorage-independent growth assays, and analyzing the expression of EMT markers. We found that both YAvns and Avns were able to inhibit colon cancer cell growth by increasing the expression of p21, p27 and p53 proteins. However, YAvns resulted more effective than natural compounds in inhibiting cancer cell migration and reverting major molecular features of the EMT process, including the down-regulation of E-cadherin mRNA and protein levels.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , ortoaminobenzoatos/farmacología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Antineoplásicos/aislamiento & purificación , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HT29 , Humanos , Invasividad Neoplásica , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , ortoaminobenzoatos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA