Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Microbiology (Reading) ; 151(Pt 12): 3979-3987, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16339942

RESUMEN

In Salmonella enterica, PhoP is the response regulator of the PhoP/PhoQ two-component regulatory system that controls the expression of various virulence factors in response to external Mg2+. Previous studies have shown that phosphorylation of a PhoP variant with a C-terminal His tag (PhoP(His)) enhances dimerization and binding to target DNA. Here, the effect of phosphorylation on the oligomerization and DNA binding properties of both wild-type PhoP (PhoP) and PhoP(His) are compared. Gel filtration chromatography showed that PhoP exists as a mixture of monomer and dimer regardless of its phosphorylation state. In contrast, unphosphorylated PhoP(His) was mostly monomeric, whereas PhoP(His) approximately P existed as a mixture of monomer and dimer. By monitoring the tryptophan fluorescence of the proteins and the fluorescence of the probe 1-anilinonaphthalene-8-sulfonic acid bound to them, it was found that PhoP and PhoP(His) exhibited different spectral properties. The interaction between PhoP or PhoP(His) and the PhoP box of the mgtA promoter was monitored by surface plasmon resonance. Binding of PhoP to the PhoP box was barely influenced by phosphorylation. In contrast, phosphorylation of PhoP(His) clearly increased the interaction of PhoP(His) with target DNA. Altogether, these data show that a His tag at the C-terminus of PhoP affects its biochemical properties, most likely by affecting its conformation and/or its oligomerization state. More importantly, these results show that wild-type PhoP dimerization and interaction with target DNA are independent of phosphorylation, which is in contrast to the previously proposed model.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfatos/metabolismo , Salmonella enterica/metabolismo , Transducción de Señal , Sitios de Unión , Dimerización , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA